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Neurogaming-based Classification of Player
Experience Using Consumer-Grade
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Thomas D. Parsons, Timothy McMahan, and Ian Parberry

Abstract—A growing body of literature has emerged that
demonstrates the potential of neurogaming platforms for inter-
facing with well-known video games. With the recent convergence
of advances in consumer electronics, ubiquitous computing, and
wearable sensor technologies real-time monitoring of neurocog-
nitive and affective states can be studied in an objective, timely,
and ecologically valid manner. Whilst establishing the optimal
relation among frequency bands, task engagement, and arousal
states is one of the main goals of neurogaming, a standardized
method has yet to be established. Herein we aimed to test
classifiers within the same context, group of participants, feature
extraction methods, and protocol. Given the emphasis upon
neurogaming, the commercial-grade Emotiv EPOC headset was
used to collect electroencephalographic (EEG) signals from users
as participants experienced various stimulus modalities aimed
at assessing cognitive and affective processing. The EEG data
were then filtered to get separate frequency bands to train
cognitive-affective classifiers with three classification techniques:
Support Vector Machines (SVM), Naive Bayes (NB), and k-
Nearest Neighbors (kNN). Results revealed that the NB classifier
was the most robust classifier for identifying game-based Death
Events. However, the identification of General Gameplay Events
is best identified using kNN and the Beta band. From this study’s
findings, it is suggested that using a combination of classifiers is
preferable over selecting just one classifier.

Index Terms—Neurogaming, Electroencephalography, Emotiv,
Cognitive, Affective, Engagement, Arousal.

I. INTRODUCTION

NEUROGAMING platforms use off-the-shelf brain com-
puter interfaces (BCIs) to improve gameplay. Using a

neurogaming electroencephalography (EEG)-based BCI plat-
form, gamers can interact with a console without the use
of a traditional controller. The addition of neurogaming to
human-computer interaction is growing in popularity and the
traditional use of a keyboard and mouse for gameplay is
lessened as more natural touch and gesture interfaces become
a more widely used interaction modality. The BCI technology
used in neurogaming is growing rapidly and adoption of this
technology is increasing. Although BCIs were traditionally
developed as a communication tools, they have also been used
for near real-time decoding of a person’s neurocognitive or
affective state. With the advent of neurogaming, researchers
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are increasingly incorporating BCIs into games. Neurogam-
ing platforms follow neuroergonomic principles, in which
knowledge of brain-behavior relationships can be applied to
optimize the design of gaming environments to accelerate
user experience. With the recent convergence of advances
in consumer electronics, ubiquitous computing, and wearable
sensor technologies real-time monitoring of neurocognitive
and affective states can be studied in an objective, timely, and
ecologically valid manner.

Video games represent an immersive activity that is rapidly
increasing in popularity. According to the Entertainment Soft-
ware Association [1], 72% of the general population and 97%
of teenagers reported regular playing of video games. Further,
video games are played more frequently and in more locations
[2]. A growing body of literature has emerged that focuses
upon cognitive assessment of video gamers [3]. In addition
to the growth of video games in general, recent studies have
demonstrated the potential of neurogaming applications for
interfacing with well-known games as “Pacman” [4], “Tetris”
[5], and “World of Warcraft” [6]. Given the growing popularity
of neurogaming and the increasing literature on cognitive and
affective aspects of video gamers, there is a need for novel
approaches to assessment of cognitive and affective processes
occurring while players are immersed in video games.

A. Knowledge of User-State During Video Gameplay

In addition to acting as a control interface, the EEG-based
BCIs used in neurogaming can provide knowledge of user-
state during video gameplay. This information is imperative
for development and assessment of video game design [7].
Individuals will invariably have different reactions to a given
game, and without an assessment tool that can be employed
online, researchers will experience difficulties in identifying
the causes of these differences. The EEG data from BCIs
provide signals that are continuously available [8] and logged
without the gamer’s conscious awareness. This creates an
objective measure of the gamer’s state, which can include
measures of cognitive workload [9], stress levels [10], task
engagement [11], among others. EEG-based arousal and en-
gagement indices can be gleaned from various sensors contin-
uously, which further increases experimental control [12].

B. EEG for Establishing Indices of Engagement

Using EEG to measure task engagement is not a new
concept. It has been widely used with medical grade EEG
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devices. Pope et al. [11] built a system to control the level
of task automation based upon the whether the operator had
increasing or decreasing engagement. Freeman et al. [13]
expanded on this same system by evaluating performance of
each task along with using absolute values of engagement
versus just looking at increasing and decreasing engagement.
Task engagement and mental workload are areas that Berka et
al. [9] explored as a way to help identify more accurate and
efficient methods for people to interact with technology with
the possibility of developing more efficient work environments
that increase motivation and productivity. Their results suggest
that EEG engagement reflects information gathering, visual
processing, and attention allocation. Smith and Gevins [14]
used a flight simulator to subject participants to low, moderate
or high difficulty tasks to see how the brain responded. The
results from their study showed an increased frontal theta
response along with reduced parietal alpha during demanding
tasks. Other work [15], [16] had similar results indicating that
an increase in theta and a decrease in alpha was correlated
with increased number of tasks along with amount time a
persons is awake. Yamada [17] measured frontal theta activity
along with eye blinking and found that children playing video
games had higher theta activity along with a high degree of
blink inhibition. These results suggest that interesting tasks
result in higher frontal theta activity while the task inhibits eye
blink activity. Recently, Kamzanova et al. [18] compared the
sensitivity of various EEG engagement indices during time-on-
task effect and cueing to detect which index was most effective
for detecting reduced alertness linked with vigilance decline
in performance.

C. EEG to Isolate Specific Game Events

In the frequency domain, the spectral power in various
frequency bands has been used for assessing arousal and
affective states [19]. Beta, EEG coherence has been found
to increase when participants viewed highly arousing stimuli
[20]. Theta power event-related synchronization studies have
found modulation during transitions in affective state [21].
In addition to spectral power and waveforms, interactions
between pairs of EEG oscillations – such as phase synchro-
nization and coherence – have also been implicated in affective
states of hedonic arousal [22]. It has been suggested that higher
frequency bands may have greater contribution contribute to
arousal response than lower frequency bands [23]. Often,
researchers emphasize the potential of Alpha power variance
with the negative and positive valence states [24] or with
discrete affective states such as happiness, sadness, and fear
[25]. Alpha power frontal asymmetry has been repeatedly
reported as a steady correlate of valence [26]. Subsequent find-
ings have suggested that frontal Alpha asymmetry may reflect
the approach/avoidance aspects of emotion [27]. The Gamma
band has been shown in previous research to find changes in
affect. Further, Gamma power event-related synchronization
and desynchronization has been related to affective states such
as happiness and sadness [28]. Also, increases in the gamma
phase synchronization index have been induced by unpleasant
visual stimuli [29].

D. Neurogaming Using Emotiv EPOC EEG

One of the most widely studied of the inexpensive off-
the-shelf neurogaming systems is the Emotiv EPOC. It is a
compact, wireless headset that requires comparatively little
effort to set up. It allows increased flexibility and mobility
over traditional EEG. Thus, providing an inexpensive tool
that game developers can use to measure EEG. Although the
Emotiv is aimed at the gaming market and is not classified
as a medical device, researchers have adopted it for a variety
of applications [30], [31]. Using the Emotiv, researchers can
detect facial movements, emotional states, and imagined motor
movement. Although the Emotiv EEG does not have the
fidelity of a laboratory EEG it still offers the ability to provide
a gamer’s brainwave signature. The system has been found to
work well detecting focused thoughts [32], [33]. Duvinage et
al. [34] compared the Emotiv headset to the Advance Neuro
Technology (ANT) acquisition system during a run with the
P300 speller system. Although the Emotiv headset was not
found to be as accurate as the ANT system (a medical grade
device), it was able to capture EEG signal at a successful level
that was deemed adequate for games.

Researchers have also investigated different EEG processing
algorithms to assess classification of shapes being thought
about [35], detection of hand movement intentions on the same
side of the brain as the hand [36], classification of positive and
negative emotion elicited by pictures [37], and evaluation of
cognitive workload [38]. With the benefit of being noninvasive
to the wearer, it is a tool that is practical for use by game
developers. McMahan et al. [39] were able to find significant
difference in the Beta and Gamma bands among various
stimulus modalities. They also found an increase in the power
estimates during high intensity game play (e.g., death events)
when compared to low intensity general game play. The
authors conclude that their findings suggest that the Emotiv
EEG can be used to assess differences in frequency bands
when persons are experiencing various stimulus modalities
using off-the-shelf EEG-based gaming technology. In addition
to task engagement, affective states have been measured while
users watched a film [40].

In sum, various neurogaming platforms use a gamer’s
psychophysiological indices to complete tasks or affect the
mood of the game. To date, the research design, data logging
of game-based psychophysiological signals, and the control
algorithms found in neurogaming are not systematic and
studies to support their use remains limited. Further, psy-
chological studies regarding the relations between affective
and cognitive correlates of brain processing are uncovering
the strong implication of cognitive processes in emotions
[41]. This has resulted in increasing emphases upon affective
neuroscience [42] and the potential for EEG data to proffer
valuable information about the participants’ felt cognitive and
affective processing. Although there have been growing efforts
in the neurogaming literature to recognize a user’s cognitive
and affective states in real time using EEG, these indices
are typically developed in isolation and do little to take
into account bout cognitive and affective information. While
establishing the optimal relation among frequency bands, task
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engagement, and arousal states is one of the main goals of
neurogaming, a standardized method has yet to be established.
The ideal research situation would test classifiers within the
same context, users, feature extraction methods, and protocol
[43].

As neurogaming systems increase in use, new properties
will need to be taken into consideration. A common difficulty
encountered in this research area is the dearth of published
objective comparisons among classifiers. In this paper, an
approach to task engagement and affective state estimation for
neurogaming is explored. The EEG signals from users were
logged as participants experienced various stimulus modalities
aimed at assessing cognitive and affective processing. Given
the emphasis upon neurogaming, the commercial Emotiv
EPOC headset was used. The EEG data were then filtered
to get separate frequency bands to train cognitive-affective
classifiers with three classification techniques: Support Vector
Machines, Naive Bayes, and k-Nearest Neighbors. The current
study aimed to develop arousal and engagement indices to
assess various levels of gaming experience using the Emotiv
EEG.

II. METHODS

A. Participants

Electroencephalographic (EEG) data was collected from 30
college aged students (66% female, mean age = 20.87, range
18 to 43). Participants were recruited from university under-
graduate and graduate pools; education levels ranged from
13 to 20 years. Ethnicity was as follows: Caucasian (n=20),
African American (n=1), Hispanic (n=4), Native American
(n=1), and Asian Pacific (n=4). All participants were right
handed and had at least average computer skills. Game playing
skills ranged from casual cell phone games to playing every
day on a personal computer or a game console. All participants
endorsed use of a computer at least once per day (every day)
with 30% reporting use of a computer several times a day.

In terms of computer experience, 66% rated themselves as
experienced, 27% rated themselves as somewhat experienced,
and 7% rated themselves as very experienced when ranking
their computer competency. Homogeneity of the sample was
found in that there were no significant differences among
participants relative to age, education, ethnicity, sex. Further,
there were no significant differences relative to, self-reported
symptoms of depression, sleepiness, game play experience, or
computer use. Strict exclusion criteria were enforced to mini-
mize possible confounding effects of comorbid factors known
to adversely impact cognition, including psychiatric condi-
tions (e.g., mental retardation, psychotic disorders, diagnosed
learning disabilities, attention deficit/hyperactivity disorder,
and bipolar disorders, as well as substance-related disorders
within 2 years of evaluation) and neurologic conditions (e.g.,
seizure disorders, closed head injuries with loss of conscious-
ness greater than 15 minutes, and neoplastic diseases). The
participants received class credit for their participation in the
study.

B. Apparatus and Measures

1) Super Meat Boy: Super Meat Boy [44] is a platform
game in which players control a small, dark red, cube-shaped
character named Meat Boy. The participant played a cube of
meat jumping around the level to avoid saw blades to reach
their goal of rescuing bandage girl. This game requires the
minimum amount of keys to play (arrow keys and space bar)
thus making it easy for any level of gamer to achieve success.
Major events in the game include successfully completing a
level and dying. Dying occurs from running into spinning saw
blades or falling into fire. As the player progresses through the
game the levels get increasingly difficult by adding more saw
blades and large jumps. Each level is timed as a goal of the
game is to get through each level as fast as possible. The core
gameplay requires fine control and split-second timing [45].
Primary game events used for this study included: 1) Death
events; and 2) “General Game Play”. The “Death events”
occurred when the participant’s character died. Although there
are a number of possible ways for a character to die in a game
(e.g., the character gets sliced to pieces, or falls into acid,
or gets skewered on needles), we sampled from death events
related to the character falling into acid. The “General Game
Play” was differentiated from “Death events” in that general
game play was sampled during periods in which the player
had not experienced any death events for 1 minute before or
after “General Game Play” sampling.

2) Two-Picture Cognitive Discrimination Task: Participants
were shown a pair of color pictures of a landscape, and
were given the evaluative task of identifying any differences
between the pair. Unknown to the participants, the pictures
were identical.

3) Spider Jump Arousal Stimulus: The Spider Jump
Arousal stimulus was first storyboarded and designed on paper.
A 3-D model of a venomous headcrab was taken from the
Half-Life 2 game [46]. The venomous headcrab was chosen
because it leaps with incredible speed while releasing an angry
squeal when a suitable host is in a clear line of sight. The
participants were subjected to the Spider Jump Arousal Stimuli
without any cue or knowledge that it would occur.

4) Game Experience Survey: Participants answered a series
of questions assessing their prior video game experience and
other personal characteristics. Participants were asked to report
the number of hours they spent playing video games on their
cell phones (M = 3.47), playing games on their computer (M
= 3.47), and playing games on their game console (M = 2.3).
20% of the participants reported playing video games more
than 20 hours per week. The participants were also asked if
they would classify themselves as “gamers”, 33% responded
as being part of this category.

5) Emotiv EPOC EEG: This Emotiv EEG headset has 14
electrodes (saline sensors) locating at AF3, AF4, F3, F4, F7,
F8, FC5, FC6, P7, P8, T7, T8, O1, O2 (see Fig. 1) and two
additional sensors that serve as CMS/DRL reference channels
(one for the left and the other for the right hemisphere of
the head). The Emotiv EEG’s 14 data channels are spatially
organized using the International 10–20 system. The Emotiv
EPOC headset does not require a moistened cap to improve
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Fig. 1. Sensor locations on Emotiv headset.

conduction. The sampling rate is 128Hz, the bandwidth is 0.2-
45Hz, and the digital notch filters are at 50Hz and 60Hz.

C. Procedure

Upon arriving at the testing office, the participants were
given an informed consent to read and sign. Included in
the informed consent was a waiver to record the participant
during the study. The participants were then seated in a
comfortable chair and given a keyboard and mouse to complete
a questionnaire about computer and game experience. For the
actual assessment, each participant played the game in the
same room location. The game was displayed on a Samsung
60 inch plasma screen. The participants sat in a chair that
has a built in keyboard tray, along with a speaker system and
USB port around head level to minimize the distance between
the Emotiv headset and the receiver/transmitter. While the
participant played the game the lights were turned off to help
immerse the player into the game and reduce glare from the
overhead lights. The experimenter combed the participants on
the left, mid-line, and right sides of their scalp firmly in order
to reduce electrode impedances [47]. After the relevant areas
on the face and mastoids had been cleaned, the Emotiv EEG
headset was positioned on the participant’s head. The examiner
verified impedances in connections between each electrode and
the participant’s scalp.

To establish base line for each participant a video was
played and were told “to relax and try not to think about
anything”. In the video the screen was blank for 2:00 minutes
to establish a minimum brain wave activity. Next, the partic-
ipant completed two tasks: the Two Picture Cognitive Task
and Super Meat Boy task (see Fig. 2). Task presentation order
was counter-balanced across participants. After the initial
task (either Two Picture Cognitive Task or Super Meat Boy)
the participant was presented with 1:30 seconds of blank
screen viewing to allow the participant to return to a steady
state. During the Two-Picture Cognitive Task they compared
two pictures to determine the difference between them. This
allowed for the establishment of a brain wave signature for
basic cognitive processing. During the Super Meat Boy Task
the researcher aided the participant with the first few levels to

+

+

+

Two Picture Task

General Game Play

Death Event

Spider Jump Arousal Stimulus

Fig. 2. Chronological order of events that participants encountered.

allow the player to become acquainted with the rules and game
controls. Next, participants were informed that they would play
Super Meat Boy for 15 minutes and that they were to advance
as far as they could in the game.

Each participant’s game play was captured in 1080p HD
(60 frames per second) using a Hauppauge video capturing
device allowing the game play to be synced the EEG data.
Each participant was also recorded using a Logitech 9000 HD
webcam to help isolate events (facial or body movements)
that may affect the EEG data. EEG data and video data
were recorded on the same computer with all non-essential
programs closed. Using OpenViBE drift correction, a 128
Hz sample rate was achieved minimizing any syncing issues
between the EEG data and the video recording of game play.
Syncing all video recordings with EEG recording software
involved the use of screen captures before and after every
section of the study (baseline video and game play). Each
screen shot produced a time stamp for EEG data and video
to establish the location of the start and end of each section.
The screen shots were saved to reference later during the data
analysis phase.

D. Data Analytics

All data were analyzed using SAS version 9.1. Descriptive
statistics were calculated for participant demographics and
for EEG results. Missing data were imputed by either mean
substitution or last case carried forward.
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A�ective
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Cognitive and A�ective Training

Headset Picture

EEG Acquisition

FFT: Spectral Power 
of EEG Signals

Classi�cation

Cognitive

SVM NB kNN

Gamma
(25 - 43 Hz)

Beta
(13 - 25 Hz)

Alpha
(7 - 13 Hz)

Theta
(4 - 7 Hz)

Delta
(1 - 4 Hz)

Fig. 3. Flow chart depicting the procedure used to obtain results. The dashed
line between classification and game events signifies the eventual use of a
closed loop system.

The Emotiv Epoc headset was used to capture the EEG
data from each participant (see Fig. 3). Emotiv TestBench and
OpenViBE were used to capture the raw EEG output from the
headset. The EEG data was segmented into epochs that started
100 ms before the onset of each stimulus (0 ms), and ended
750 ms after the onset of the same stimulus. Epochs were
calculated for 4 different modalities: 1) Two-Picture Cognitive
Task; 2) Spider Jump Arousal Stimulus; 3) General Game
Play; and 4) Death events.

Artifacts such as blinking, head movements, or body move-
ment can cause unwanted data in EEG data. Most EEG
analysis requires removal of these artifacts to help identify
medical issues. However this is not necessarily a detrimental
issue when using for game play analysis. These types of
artifacts are common in everyday game play [48]. These
artifacts can actually be used for further analysis as body
movement or other movement can signify engagement [49].
The EEG artifact data was annotated as artifact where visually
noticeable deflection in the EEG was observed at the times
that participants performed movements. Artifacts related to
eye blinks and other muscle movements in addition to physical
movements of the sensors themselves were removed before the
EEG traces were processed. The Emotiv SDK automatically
detects and records eye blinks. Given that muscle contraction
and control are generally governed outside of the frequency
range of interest [50], we were able to use frequency band
limiting procedures such as low-pass, high-pass and notch
filters to adequately remove these signal components. As
Anderson et al. [51] describe, after removing EEG artifacts
the researcher may assess whether the energy densities of the
alpha or theta frequency bands are changed by more than 20%
of their original values. If so, the trial should be removed from
all further analysis. In this study, we did not need to throw
out any of the trials due to excessive signal degradation from
movement or excessive change in spectral densities.

The spectral power of EEG signals in different bands has
been found to be correlated with emotions [52]. The power
estimates (µV2) were found using a fast Fourier transform
(FFT) and a 1 second Hamming window with no overlap for
Delta (1 – 4 Hz), Theta (4- 7 Hz), Alpha (7 -13 Hz), Beta (13

– 25 Hz) and Gamma (25 – 43 Hz) for all 14 sensor location
on the Emotiv headset. In typically EEG studies, the number
of channels (e.g., 32, 64, 128, or 256 EEG channels) ranges
from 32 channels (for routine exams) up to 256 channels (for
source estimation) and the systems are able to sample at up to
1000Hz. Given that the Emotiv has only 14 channels and the
data sample rate is only 128Hz, the average was calculated
across all 14 sensors to obtain a global average for each
frequency band. Following Anderson et al. [38] the baseline
and stimulus signals were transformed to determine the power
change and frequency shift induced by the task. These values
are used to calculate the cognitive processing experienced at
each of the 14 sensors for a given task. The spatial averaging of
the 14 values gives a single measurement for analysis. Finally
the data was normalized with the natural logarithm (ln).

Pope et al. [11] and Freeman et al. [13] have shown that
an engagement index can be calculated by taking the ratio of
Beta / (Alpha + Theta) EEG bands. Berka et al. [9] was able to
show that the engagement index reflected a person’s process of
information-gathering, visual scanning and sustained attention.
The engagement index was calculated for each participant
using the single measurement form all sensors. Arousal has
been shown to be measured by using (BetaF3 + BetaF4) /
(AlphaF3 + AlphaF4) and valence using (AlphaF4 / BetaF4)
- (AlphaF3 / BetaF3) [53].

All user data sets were analyzed together aiming to verify
the possibility of building a generalizable model. We assessed
the importance of all the EEG signals and their aggregate
impact on the classification accuracy. Time epochs were split
into corresponding signals, which resulted in 128 EEG mea-
surements each for Alpha, Beta, Theta, Gamma, Engagement
Index, and Arousal Index. This produced 30 data sets for each
event: Two Picture Cognitive Discrimination Task – 30 sets
of data to train representing one from each participant; Spider
Jump Arousal Stimulus – 30 sets of data to train representing
one from each participant; Game Play - 30 sets of data to
test representing one from each participant; and Death Event
- 30 sets of data to test representing one from each partici-
pant. Training was completed on the Two Picture Cognitive
Discrimination Task and Spider Jump Arousal Stimulus data
sets and tested on the Game Play and Death data sets. Given
that it was a 50/50 data set, cross-validation was irrelevant and
it was not used.

1) Support Vector Machine: To classify a set of binary
labeled data, the support vector machine (SVM) algorithm
uses a hyperplane to separate the data into two classes. During
the training process of the SVM takes in data belonging to
each category and maps them into a higher dimensional space
with the goal of creating a hyperplane with the maximum
difference. The training process can use different types of
kernels (linear, polynomial, or radial basis function) to achieve
a better hyperplane. During the testing process test new data
is run through the SVM and placed into one of two categories
based upon which side of the hyperplane the new point falls
following training of the algorithm on a given data set, the
discriminate hyperplane is optimized and selected based on
the maximum margins between the hyperplane and the data.
This is accomplished via transformation of the data from the
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input space into feature space (in which linear classification is
achievable). This is achieved through outlier accommodating
and error allowance during training [54]. The SVM technique
has been used for arousal state estimation and results revealed
a recognition accuracy of 83% could be achieved [55]. Herein
the Classification SVM Type 2 was implemented in the libsvm
library using 0.5 nu-SVM classification with radial basis
function kernel. Gamma was set to 0.008 and the maximum
number of iterations 1000. A stop error of 0.001 was utilized.

2) Naive Bayes: The Naive Bayes (NB) Classifier tech-
nique is based on Bayes theorem and is appropriate when the
dimensionality of the inputs is high. This classifier computes
the probability that some data points belong to a specific class.
To perform the classification, the algorithm chooses the class
with the highest probability, as its result. When event related
potentials are included as a feature, the NB has been used
to classify emotions in two classes (low valence and high
valence) with a classifying accuracy of 56% [56]. In a related
analysis, NB has been found to provide recognition accuracy
of 70% for two classes (as reviewed in Nie et al. [23]). The NB
is an efficient supervised learning algorithm used to classify
data into different groups based upon a calculated probability
of new data belonging to that group. The NB classifier makes
the assumption that each input is independent from every other
input. During the training phase the classifier takes the inputs
and builds feature vectors for each category. When new data is
presented to the NB classifier it uses the maximum likelihood
estimates to find place that data into the correct category. The
NB classifier has an added benefit of not requiring large sets
of training data to be effective at classification.

3) k-Nearest Neighbor: k-Nearest Neighbor (kNN) is a
supervised learning algorithm that classifies data into different
groups based upon how closes it is located to a category.
During training the classifier stores each category data into
a feature vector. New data is then classified based upon the
training sample that has the shortest distance to the new data
point. An issue that can arise from the kNN classifier is if the
data does not have an even distribution causing the classifier
to favor one category over the other. In a study of arousal
state estimation Lin et al. [57] extracted power spectrum
density of different EEG sub-bands as features during an
emotion induction (listening to music) protocol. They found a
classification accuracy of 82% for four emotions. In another
study using the kNN technique for two different sets of
EEG channels (62 channels and 24 channels), an accuracy
of 82.87% was found for the 62 channel data set and 78.57%
for the 24 channel data set for five emotions [58].

E. Results

Each participant’s results from the Two Picture Cognitive
Discrimination Task and Spider Jump Arousal Stimulus were
used to predict General Gameplay Events and Death Events
using a Support Vector Machine (SVM), a Naive Bayes (NB)
classifier, and a k-Nearest Neighbor (kNN) classifier (see
Table I). Having thirty participants in the study allowed for
a total of 60 data points (30 for the Two Picture Cognitive
Discrimination Task and 30 for the Spider Jump Arousal

TABLE I
OVERALL CLASSIFIER PERCENTAGES

Machine Learning Mean Std.
Deviation Min Max

SVM 57.5 4.44 50.0 63.3

NB 70.0 6.56 58.6 75.9

kNN 57.9 11.15 44.5 76.0

TABLE II
SIGNAL CLASSIFICATIONS PERCENTAGES

Machine Learning Mean Std.
Deviation Min Max

Engagement 64.1 7.50 56.7 71.6

Arousal 59.6 5.10 54.3 64.4

Alpha 55.4 14.34 44.5 71.6

Beta 68.9 10.64 56.7 76.0

Theta 61.4 13.20 50.0 75.9

Gamma 60.1 2.76 58.5 63.3

Stimulus) to train each classifier and 60 data points to test
each classifier (30 for the General Gameplay Events and 30
for the Death Events). 128 EEG measurements were used
for the predictors which represent the time period for each
modality. The Engagement Index (Beta / (Alpha + Theta);
Pope et al. [11] and Freeman et al. [13]), Arousal Index
(BetaF3 + BetaF4) / (AlphaF3 + AlphaF4) and Valence Index
(AlphaF4 / BetaF4) - (AlphaF3 / BetaF3; [53]), as well as
Alpha, Beta, Theta, and Gamma bands were all tested to
identify the strongest signals for classification (see Table II
and Table III).

1) Machine Learning Classifiers and EEG Power Spectral
Bands: Fig. 4 shows the overall accuracy for each classifier
using the different signals. From Fig. 4 it is apparent that the
strongest classifier was NB especially when using the Theta
and Beta signals. The NB classifier had an overall average
of 70% correct classification. Although the kNN classifier
produced the highest accuracy rate with the Beta signal when
compared to other classifiers, it performed poorly with the
Alpha signal. Gamma turned out to be the strongest predictor
in the SVM classifier. The Beta band wave was the strongest
predictor followed by Theta, the Engagement Index, and then
Alpha.

2) Distinguishing between General Game Play and Death
Events: Fig. 5 illustrates that using the Two Picture Cognitive
Discrimination Task and the Spider Jump Arousal Stimulus
to train the SVM classifier did a better job overall classifying
General Gameplay Events over Death Events. The strongest
signals again were Beta, Theta, and the Engagement Index.
The Gamma band showed the most potential with this classi-
fier as it did the best job in classifying Death Events.

Fig. 6 shows that the NB classifier did the best job clas-
sifying Death Events from the training data. The strongest
signals were Theta and Beta followed by Alpha and the
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TABLE III
INDIVIDUAL CLASSIFICATION PERCENTAGES

Signal SVM NB kNN

Engagement 56.7 71.6 64.0

Arousal 60.0 64.4 54.3

Alpha 50.0 71.6 36.1

Beta 56.7 74.0 76.0

Theta 58.3 75.9 50.0

Gamma 63.3 58.6 58.5

Fig. 4. Overall classifier results for each machine learning algorithm.

Engagement Index. While Gamma performed well for the
SVM classifier, the Gamma band performed the worst for NB.
The overall trend of the NB classifier reveals it as being the
most steady and reliable in distinguishing between General
Gameplay Events and Death Events.

Although the kNN classifier had the greatest variance in
terms of signal was being used for classification, it did a
better job overall with General Gameplay Events (see Fig. 7).
The Beta signal was the strongest predictor for the kNN
classifier for both General Gameplay Events and Death Events.
Although Alpha was the weakest predictor, it performed better
in predicting Death Events then General Gameplay Events.
The overall trend of the kNN classifier was erratic but revealed
potential when using the Beta signal.

III. DISCUSSION

While various neurogaming platforms use machine learning
to model a gamer’s EEG indices, the research designs, data
logging of game-based psychophysiological signals, and the
control algorithms found in neurogaming are not system-
atic and studies to support their use remains limited. As
neurogaming systems increase in use, new properties will
need to be taken into consideration. A common difficulty
encountered in this research area is the dearth of published
objective comparisons among classifiers. Although there have
been growing efforts in the neurogaming literature to recognize
a user’s cognitive and affective states in real time using
EEG bands, these studies do little to take into account both
cognitive and affective information. While establishing the
optimal relation among frequency bands, task engagement,

Fig. 5. SVM classifications percentage across each signal for game play and
death events.

Fig. 6. NB classification percentages across each signal for game play and
death events.

and arousal states is one of the main goals of neurogaming,
a standardized method has yet to be established. Herein we
aimed to test classifiers within the same context, users, feature
extraction methods, and protocol [43]. Specifically, the EEG
signals from users were logged as participants experienced
various stimulus modalities aimed at assessing cognitive and
affective processing. Given the emphasis upon neurogaming,
the commercial Emotiv EPOC headset was used. The EEG
data were then filtered to get separate frequency bands to
train cognitive-affective classifiers with three classification
techniques: Support Vector Machines, Naive Bayes, and k-
Nearest Neighbors.

A. Machine Learning Classifiers and EEG Power Spectral
Bands

The Beta band wave was the strongest predictor followed
by Theta, the Engagement Index, and then Alpha. This was
not surprising given that Beta EEG coherence has been found
to increase when participants viewed highly arousing stimuli
[20]. Further, McMahan et al. [39] found significant difference
in the Beta band among various stimulus modalities. The Naive
Bayes classifier had an overall average of 70% correct classi-
fication. Further, NB was found to be the strongest classifier
when using the Theta and Beta signals. These findings are
consistent with findings that NB has been found to have a
good classification for two classes [56]. Although the kNN
classifier produced the highest accuracy rate with the Beta
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Fig. 7. kNN classification percentages across each signal for game play and
death events.

signal than any other classifier, it performed poorly with the
Alpha signal. For the SVM classifier, Gamma turned out to
be the strongest predictor.

B. Cognitive and Affective Training

Using the Two Picture Cognitive Discrimination Task and
the Spider Jump Arousal Stimulus to train the SVM classifier
did a better job overall classifying General Game Play over
Death Events. These results support findings that the SVM
technique is useful for classifying arousal state and has been
found to have a recognition accuracy of 83% [55]. Again, the
strongest signals were Beta, Theta, and the Engagement index.
The Gamma band showed the most potential with the SVM
classifier as it did the best job in classifying Death Events.
The Gamma band has been shown in previous research to
find changes in emotion [59], however this research looked at
a Gamma band ranging from 30-100 Hz which was far outside
the range of the Emotiv (has a cut off of 45 Hz).

C. Distinguishing between General Game Play and Death
Events

The NB classifier did the best job classifying Death Event
from the training data. The strongest signals were Theta and
Beta followed by Alpha and the Engagement index. Unlike
in the SVM classifier the Gamma band performed the worst.
The overall trend of the NB classifier shows it being the
most steady and reliable in distinguishing between General
Gameplay Events and Death Events. The kNN classifier varied
more upon which signal was being used to classify, but overall
did a better job with General Gameplay Events. The Beta
signal was the strongest predictor in for the kNN classifier for
both General Gameplay Events and Death Events. The Alpha
signal was the weakest predictor, however it did perform better
in predicting Death Events than General Gameplay Events.
Although the overall trend of the kNN classifier was erratic,
potential was observed when using the Beta signal.

D. Real-time implementation

This study provided an initial validation of an approach to
using baseline EEG measures to predict various events users

experience while playing video games. Given the validation
resulting from the current study, future work will aim at
developing a neurogaming protocol that includes training of
classifiers off-line using baseline tasks so that during the
subsequent game play events encountered by users could be
readily identified. The results suggest that the NB classifier
is the most robust classifier for identifying Death Events.
However, the identification of General Gameplay Events is
best identified using kNN and the Beta band. From this study’s
findings, it is suggested that using a combination of classifiers
is preferable over selecting just one classifier. For example, a
weighting scheme could be implemented in which weights are
applied to the strongest attributes from each classifier (e.g.,
Beta signal from kNN). This would result in a more robust
and powerful final determinate of which category best fits
an existing user state. The results from all of the classifiers
would then be compared to find the optimal state of the player.
Whilst using multiple classifiers requires greater training time
performed off-line, once trained and weighted, these classifiers
will be executed during real-time gameplay. As events are
successfully identified the classifiers can use those events to
retrain the classifier to improve the accuracy.

E. Limitations and Future Directions

Our findings should be understood in the context of some
limitations. These findings are based on a fairly small sample
size. As a necessary next step, the reliability and validity
of the Emotiv EEG needs to be established using a larger
sample of participants to ensure that the current findings
are not an anomaly due to sample size. Further, findings
need further validation through straightforward comparison
of Emotiv EEG results with those of standard laboratory-
based EEG assessment technology. It is important to note,
however, that the Emotiv has been favorably compared to a
laboratory-based research EEG system (Neuroscan). Badcock
et al. [60] found that the Emotiv EEG system can prove a valid
alternative to laboratory ERP systems for recording reliable
late auditory ERPs over the frontal cortices. While we found
some interesting results, it is important to emphasize that these
are very preliminary there are not currently well-established
methodologies for examining the impact of game levels on
players. Nevertheless, there is an increasing body of literature
suggesting that game impact can be measured via EEG [61],
[62]. Future studies will be needed to expand these results
into methodological approaches to quantifying video game
based EEG assessment in general and Emotiv–based EEG
assessment of various games in particular.

IV. CONCLUSION

We have presented findings from a neurogaming protocol
study aimed at using an off-the-shelf Emotiv EEG to test
classifiers within the same context, users, feature extraction
methods, and protocol. Results provided initial validation of
an approach to using baseline EEG measures to predict various
events users experience while playing video games. Given
the validation resulting from the current study, future work
will aim at developing a neurogaming protocol that includes
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training of classifiers off-line using baseline tasks so that
during the subsequent game play events encountered by users
could be readily identified.
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