

A Server-Side Framework for the Execution of
Procedurally Generated Quests in an MMORPG

 Jonathon Doran
Ian Parberry

Technical Report LARC-2015-01

Laboratory for Recreational Computing
Department of Computer Science & Engineering

University of North Texas
Denton, Texas, USA

February, 2015

A Server-Side Framework for the Execution of
Procedurally Generated Quests in an MMORPG

Jonathon Doran
Dept. of Computer Science
and Information Systems

Bradley University
jhdoran@bradley.edu

Ian Parberry
Dept. of Computer Science

and Engineering
University of North Texas
http://larc.unt.edu/ian

ABSTRACT
We describe a framework for executing procedurally gener-
ated quests implemented in the MMORPG Everquest using
the Open Source EQEmu Everquest server. Quests play out
at run-time using a collection of triggers, which consist of
a testable game state condition and a script that is to be
run when the condition is satisfied. We describe the inter-
face between the quest generator and the server which en-
ables the seamless integration of the procedurally generated
quests within the existing server architecture. To demon-
strate how this process takes place in real time, we analyze
a nontrivial procedurally generated quest and describe the
key server-controlled actions that derive from it.

1. INTRODUCTION
Massively Multiplayer Online Role Playing Games (com-
monly abbreviated MMORPG) pose a significant challenge
for procedural content generation. Of the content which
might be procedurally generated, the quest is perhaps the
most difficult. Quests are tasks assigned to players in the
game, combining narrative elements and problem solving
with combat and survival in a hostile world. Creating these
quests requires the creation of in-game agents, items, and di-
alog. A quest generator must inform the game engine about
which tasks need to be performed by both the player and
the engine, what the criteria for success is, and when events
should occur.

Procedural quest generators place a number of requirements
on a game server. These can arise from the need to have
the generator run with little or no human intervention, the
need to introduce new quests into a world without breaking
any existing functionality, and the need to remove quests
without negative consequences. We demonstrate the design
and implementation of a procedural quest generator for the
MMORPG Everquest using an Open Source emulated server
and an Everquest client released by Sony Online Entertain-
ment via Steam in 2010 (See Figure 1). We believe that our
framework is general enough to be adaptable to other server
architectures provided certain requirements are met.

The remainder of this paper is divided into five sections. In
Section 2 we consider related work. In Section 3 we briefly
describe the procedural quest generator. In Section 4 we
discuss the specific requirements that the Everquest server
imposes on the execution of procedurally generated quests at
run-time. In Section 5 we describe the interface between the
quest generator and the Everquest server. In Section 6 we

show how we were able to meet the server’s requirements and
control quest execution. In Section 7 we analyze a sample
procedurally generated quest and describe how the server is
able to make the quest play out in real time.

2. RELATED WORK
Massively Multiplayer Online Role Playing Games
(MMORPGs) are persistent interactive worlds shared
by many players. Players face many challenges in these
games, among them are structured activities known as
quests. Quests consist of objectives, tasks, and success or
failure conditions (see Ashmore and Nitsche [2], and Doran
and Parberry [7]). Dickey [5] notes that players strategize,
collaborate, and plan their solutions to these challenges as a
major form of gameplay. Rewards from quests are often the
primary motivation for players to engage in gameplay, and
in these cases a compelling story is not required. Quests
can play a significant role in content delivery by providing
narrative and guiding player involvement in the world
(see Grey and Bryson [8], Joslin, Brown, and Drennan [9],
Smith et al. [13], and Tomai, Salazar, and Salinas [15]).
Quests can be used to relate epic stories (see, for example,
Bateman and Boon [3]). One of our long-term goals is
to determine if improved storylines can result in players
focusing as much on the storyline as the reward.

There is no intrinsic meaning for quests, only potential
meaning (Tronstad [17]), which means that discovery of this
meaning is a task for the player. Tronstad also notes that
as quests are a search for meaning, once solved they cannot
be performed again, since we only have one opportunity to
experience a quest for the first time. To maintain a body of
novel content, one must constantly introduce new content
into the game. Procedural quest generation is a logical solu-
tion, if the generators are capable of providing the meaning
of which Tronstad speaks (see Ashmore [2], Kybartas [10],
Reed et al. [11], Sullivan, Mateas, and Wardrip-Fruin [14],
Tomai, Salazar, and Salinas [16], and Zook et al. [19]).

Aarseth’s [1] analysis of the quests in Everquest has sug-
gested that the player’s task is finding“one acceptable path”,
which is evidence that player agency is limited (see also
Wardrip-Fruin et al. [18]). We can posit that the introduc-
tion of additional paths would be of great benefit to playa-
bility.

The reduction of resource requirements is important for
architectures which need to scale, such as those found in

MMORPGs. In the study of computer networks we have
seen how explicit notification of relevant events can reduce
unwanted traffic, leading to less resources needed to process
this traffic (see Smed, Kaukoranta, and Hakonen [12]). The
reduction of traffic in networks is an appropriate model for
reducing event handling in a game. In both situations we
consider solicited versus unsolicited event notification and
handling. This publisher/subscriber pattern was also dis-
cussed in terms of client/server communications by Calta-
girone et al. [4]. We have adopted this technique by requiring
quests to subscribe to certain types of events at appropriate
points during their execution.

3. QUEST GENERATION
We generate quests using the technique previously described
by the authors in Doran and Parberry [7], starting with an
NPC and selecting a strategy template appropriate for its
motivation. These templates are part of a plan library, and
can to be expanded to the desired level of complexity. Com-
plications and follow-on quests can be added to a template,
causing more strategies to be used. These new strategies
can also be expanded as needed.

The generator was modified slightly to assign a number of
points to strategies representing their difficulty, and ran-
domly dividing these points among new strategies during
the expansion process. If we view the set of strategies used
as a graph, we see a tree structure growing from the original
root goal. Points over a minimum value are allocated ran-
domly to leaves, which then add child nodes that become
new leaves. Points are consumed by each of the strategy
templates, so the initial point total limits the size of the
generated tree.

This differs from planning algorithms, as we start with a
viable solution in the form of a trivial goal, and add addi-
tional subgoals while preserving the overall strategy; thereby
by adding obstacles to the path the player must take to sat-
isfy the original goal. This might be done by making a
needed asset hard to obtain, relying on knowledge that is
not obvious or commonly known. This process will continue
as long as necessary to consume the points allocated to the
new branches. Planning algorithms, on the other hand, start
with an initial state and a goal and attempt to generate a
graph that connects the initial state to the goal state. There
is no guarantee that a viable solution exists, and computa-
tionally expensive search techniques must be employed to
find any solution. Unlike planning solutions, our approach
builds solutions in constant time.

If quest generation fails, which might be due to requiring
more points for a branch than are available or exhausting
available world assets, the quest generator employs back-
tracking to attempt an alternate solution. In practice we
found that the limiting factor in creating large quests is the
size of the world knowledge base. For example, a small, fi-
nite set of world locations is inadequate unless the generator
can reuse locations, but it is preferable to avoid this reuse
to help keep quests believable while preserving variety.

Novelty in procedurally generated content is a very impor-
tant quality, as it creates the variety of content which players
desire (Doran and Parberry [6]). This variety is obtained by

Figure 1: A screen shot of the Everquest client.

changing the subquests (or nodes) created, and the details
of each node, such as assets and dialog. By changing the
distribution of points among quest nodes, we permit differ-
ent tree topologies to be created and change the difficulty
of the subquests generated with each node. Asset selection
(such as NPCs and items) can also have a significant impact
on the structure and appearance of a quest. NPCs in par-
ticular have motivations which limit the types of subquests
possible from the node referencing the NPC. In general, the
number of unique combinations of assets and nodes increases
significantly with the number of points allocated.

4. SERVER REQUIREMENTS
Our preliminary work on quest generation (Doran and Par-
berry [7]) dealt with the generation of quests in isolation.
Interfacing a quest generator to a large, commercial qual-
ity MMORPG game engine is a complex task that taxes
our abstractions to the limit. We selected the game Ev-
erquest for this purpose because the client could easily be
purchased, and there is an available open-source server em-
ulator EQEmu1.

An EQEmu quest is implemented as a set of Perl or Lua
scripts associated with the corresponding game assets. Each
script may declare a handler for any of the supported events
and, by interacting with server objects, change the state of
the world. To simplify quest management, we enforced the
requirement that each quest be implemented with a single
script that can be added or removed from the server without
impacting any other quests.

The run-time support for the quests created by our gener-
ator makes use of information stored in a database. Each
quest is represented by a single file containing the informa-
tion needed to create the script and perform the necessary
database updates. We chose to implement this file as an
XML document. A quest can therefore be shared with an-
other server by sharing the XML file created by our gener-
ator.

The run-time support for quests will require information on
game events as they occur. The exact events, and the data
associated with them, will of course be different from game
to game. In general an event will correspond to some state

1http://www.eqemulator.org

Figure 2: The EQEmu zone server responds to game
events by having an event handler send a notification
to a script handler, which selects, initializes, and
runs a script.

change in the world, for example, this could be a non-player
character (NPC) entering or leaving the world, an item being
acquired, or the player visiting some location. The run-time
support for quests created by our generator requires cus-
tom event handling. The previous EQEmu server generated
events by sending an enumeration and several parameters
to script parsers, which then created an appropriate initial
state for a event handler script and then called one of the
scripts associated with an asset (see Figure 2).

This sequence of actions requires that the code that notifies
the system of an event must know the type of asset that will
handle the event; additionally, any optional parameters must
be passed to the script parsers. The resulting event handling
code is spread over several classes, and knowledge of how a
given event is to be be handled is required of the code that
raises the event. Our approach is similar, but stores all
information associated with an event into an Event object
which is passed to the Trigger Manager. This simplifies the
script interface, and provides a general event interface which
can easily be extended if new events are desired.

Events are represented in EQEmu by discrete objects that
are wholly self-contained. Each event is passed into common
event handling code which determines the proper event han-
dler and makes the necessary calls to process it. The system
can support as many custom event handlers as necessary.
Our run-time is given the first chance to handle each event,
and in the case of failure, the event will be passed back to the
legacy asset scripts (see Figure 3). Multiple quest systems
can coexist at run-time without risk of interference.

5. THE SERVER INTERFACE
As described above, our quest generator produces a single
XML document for each quest, which document must then
be loaded onto the game server. We implemented a Java
quest importer (see Figure 4) that processes these XML doc-
uments and, based on the information inside, either adds
or removes a quest from the server. This application cre-
ates the run-time scripts based on the XML elements and
updates the game server database. These operations are
obviously game-dependent, but the principle is common to
all MMORPG engines: The quest generator must commu-
nicate quests to the server using some combination of flat
files or databases. Our XML format can in principle be eas-

Figure 3: We modify the EQEmu zone server so
that our quest handler has the first opportunity to
respond to game events.

Figure 4: Getting the quest from the quest genera-
tor to the quest database.

ily extended to other forms of data storage used by a game.
Notice that although the generator supplies the structure
of the quest, some input is required from a human designer
to customize things such as NPC dialog and the names of
NPCs and items.

For convenience we define a structure called a trigger, which
consists of a test to be applied against the game state and a
script to be executed if the test succeeds (see Figure 6, bot-
tom left). For example, the test could specify player arrival
at a certain location, and the script could result in an NPC
at that location giving an important object to the player.
While in principle the firing condition may be an arbitrary
Boolean formula involving any number of game state vari-
ables, certain triggers are more common (see Table 1). The
null trigger, which fires immediately upon creation, is a use-
ful way to compose a sequence of actions.

Figure 5 shows the structure of the XML file produced by

Type Firing Condition

null immediately
item item is created
converse player conversation matches regular expression
give player gives an item to an NPC
proximity player enters a certain area
acquire item enters player’s inventory
subquest subquest completes

Table 1: Some common trigger types and their firing
conditions.

<?xml version=”1.0” encoding=”utf−8”?>
<quest>
<title lang=”en”>graph 0</title>
<id>5a729d34−30c3−11e4−a10d−001d7d0a5e7c</id>

<node>
<name>Root</name>
<task>gather parts for a Simple Pauldron</task>

<assets>
<item>
<id>\$item 3</id>
...

</item>
...

</assets>

<triggers>
<match>
<id>hail 1</id>
<zone>394</zone>
<sequence>0</sequence>
<regex lang=‘‘en’’>\bhail\b</regex>
<Perl> ... </Perl>
<task>speak with Blacksmith Jones</task>
<repeatable>

</match>
...

</triggers>
...

</node>
...

</quest>

Figure 5: Structure of a quest file

the generator. Each quest is given a title, which is used by
the importer to display a list of quests. A GUID is assigned
by the generator, so that quest names and quest ids do not
need to be globally unique. When a quest is loaded onto
a server, it is assigned a locally unique identifier (such as
a counter incremented for each unique quest loaded), and
the GUID and title are associated with this identifier. All
database modifications are logged with the corresponding
quest identifier, allowing the importer to later remove the
quest.

Our generator represents quests as graphs, which structure
can be seen within the XML document. The Quest Graph
consists of a set of nodes with triggers that correspond to
graph edges (see Figure 6, right). Each node is assigned
a name and an optional task text. The task text can be

Figure 6: A Quest Graph node (top left), a trigger
(bottom left), and a quest graph (right).

Figure 7: A screen shot of the Everquest journal.

used within a game to identify quest steps, as we do with
Everquest’s quest journal (see Figure 7). Each node contains
a set of assets that need to be created at runtime, and a
set of triggers (see Figure 6, top left). The first use of an
asset causes an asset record to be written, and further use
of the asset can be performed by reference to the asset id.
Game-specific properties are included in this asset record,
but we assume that in general any game will assign some
set of properties to any object in the world. Our importer
creates database entries for quest-specific assets, introducing
them into the game and allowing characters to interact with
them. If a quest is later removed, the database entries for
intermediate (non-reward) items are also removed and these
items disappear from the world.

We can consider each quest to be a finite state machine in
which the triggers are the events that can change its state.
For example, trigger hail 1 has the type “match” which re-
quires player speech match a regular expression given in the
trigger. In Figure 5 we see a trigger which requires the
word “hail” to be spoken by the player before the quest will
advance. This is a typical trigger word used in Everquest.
The Perl element contains functions written by the generator
that will be executed if the regular expression is matched,
possibly providing a spoken response or other NPC action.
This combination of an arbitrary set of triggers and a very
capable scripting language can allow any event which might
occur in a game to be paired with any server-side responses
that might be required. All game-specific logic is contained
in the meta-rules in the quest generator, which are separate
from the general rules which might apply to any game.

Each trigger is assigned a sequence number that indicates
the order in which triggers are required to fire. It is possible
to have several triggers with the same sequence number, and
therefore able to be performed at the same point in time.
That is, triggers are partially ordered and allow the player
to choose which parts of the quest they will work on next.
In Section 6 we will show how these sequence numbers are
used at run-time.

Triggers may be marked as repeatable and/or optional, al-
lowing different combinations of trigger firings to be specified
by the generator. Repeatable triggers are needed at points
where the player may restart the quest following a failure

Figure 8: The quest manager manages all of the
things associated with a quest, including client state,
triggers, graph nodes, timers, and world entities
such as places, agents, and assets.

to complete a later quest stage. For example, a repeatable
trigger can be used to permit the initial conversation with
an NPC to be repeated if the player fails to advance beyond
the first checkpoint. Without checkpoints (and the corre-
sponding rollback logic), the player is committed to either
complete the next quest stage or fail the quest. Optional
triggers are for events that might occur and necessitate a
response, but which are not required to successfully com-
plete the quest. Node, asset, and trigger data are stored in
a database for our Everquest server to access. The PERL
functions are collected into a single PERL script, which ex-
ists in a quest-specific namespace. This means that function
names only need to be quest-unique, simplifying the process
of working with multiple generated quests.

6. THE QUEST & TRIGGER MANAGERS
Although the emulated Everquest server was initially capa-
ble of processing events and performing quests, it was not
able to work with quests produced by our generator. Mod-
ifications were made to the server to allow it to execute
the procedurally generated quests loaded by the process de-
scribed in section 5. We created a quest manager which
provides an interface to scripts, and manages client state,
timers, and registrations of world entities that need to be
notified when global events (not associated with any client)
occur (see Figure 8). For example, NPCs that move along
a route of waypoints need an event to be generated when
a waypoint is reached. This event triggers the manager to
assign the NPC the next waypoint in the route.

The quest manager also has the ability to checkpoint and
rollback quest state in the event that part of a quest needs
to be repeated. For example, if a player obtains an item
needed to complete a quest and then manages to somehow
lose it, the quest state is rolled back to the point prior to the
player obtaining the item. The quest manager keeps track
of modifications to the local world state, so that these can
be removed when the quest advances or the player leaves the
zone. One of the local modifications supported is selective
visibility, which makes assets only visible to players asso-
ciated with the quest. Association means that the player

Figure 9: When notified of an event by the EQEmu
event handler, the trigger manager determines
which triggers should fire by testing them against
the game state, then executes their scripts.

has the quest, and is at the proper point in the quest to
see the asset, or that the player is grouped with someone
meeting those requirements. This allows groups of players
to cooperate on quests without affecting other players. The
quest manager was implemented as a singleton pattern, and
therefore exists in its own globally accessible namespace.

Cache managers were created for nodes and triggers that
are active in the world. An active node or trigger is one
with at least one player at the corresponding graph node,
or waiting to complete the trigger. This optimization allows
events to be screened against active objects rather than all
objects associated with a quest.

The trigger manager handles all events generated by the
game server, and attempts to match them with active trig-
gers (see Figure 9). The match occurs when the event meets
all of the firing requirements, and there is at least one player
with the trigger active. Upon detecting a match, the trigger
is said to fire and the trigger-specific script is executed. The
trigger may or may not complete as a result of this firing.
Some triggers require multiple firings before they complete,
such as one might find when a player is asked to collect sev-
eral objects in a set. Each collection advances the state of
the trigger, until the terminal state is reached and the trig-
ger completes. Upon completion the node associated with
the trigger is notified, and the trigger is deactivated. If there
are no outstanding triggers required by this node, the node
can then complete and advance the quest state to the node
at the next sequence. When the terminal node in the graph
completes, the quest ends. It is assumed that the terminal
node takes care of any rewards associated with the quest.

7. AN EXAMPLE QUEST
The capabilities of this system can be seen by viewing a sam-
ple quest generated by our generator and playable in-game
in Everquest. The overall structure of the quest is shown
in Figure 10, where the quest starts at the Root node, and
the player is required to complete subquests represented by
other graph nodes either as prerequisites or postrequisites.
In this example, all nodes represent follow-on quests to be
completed as part of, or after the preceding node. The quest

starts with the character Blacksmith Jones asking the player
to gather materials and make a piece of armor. This requires
the player to obtain metal panels and a venom sac from
a poisonous snake. These ingredients are determined ran-
domly, and the recipe is only usable by the player perform-
ing the quest. The player is directed to see Councilmember
Ithakis for the metal panels, and the Councilmember offers
to give the player the panels in return for a favor. The
Councilmember wants the players to locate a lucerne leaf
(another ingredient which could be used to make armor),
and suggests that the player ask Farmer Jones for help. The
farmer is happy to give the player a leaf, which is then turned
over to the Councilmember. The players are then asked to
deliver a message to a character named Nech Ilya, saying
that Councilmember Ithakis has the lucerne he needs. After
this is completed, the player receives the metal plates.

Blacksmith Jones suggests greenscale vipers might be a good
source of venom sacs, and the players must find some of these
snakes in the world and kill them until they find one with
a rare intact venom sac. With this item, they are able to
create the custom armor piece for the Blacksmith, and earn
their reward.

Generation of this quest requires the selection of appropriate
tasks each NPC would like performed, and the creation of
custom items for the quest. Special metal plates and venom
sacs are only available to the player running the quest, or
any character in the same group or raiding party as the
player running the quest. Custom character dialog is created
for each participating character, as well as control records
which bring the items and characters into the world at the
appropriate time.

The quest plays out as follows:

1. When the player enters the Crescent Reach zone, a
converse trigger is created, requiring the player to hail
Blacksmith Jones.

2. The player hails Blackmith Jones, activating the con-
verse trigger.

3. Blacksmith Jones asks the player to help gather mate-
rials for a piece of armor that he is making.

4. Several subquest triggers are activated, causing null
triggers at the start of each subquest to fire.

(a) The null triggers deliver instructions for each sub-
quest.

5. Blacksmith Jones suggests that the player ask a Coun-
cilmember for help getting metal panels.

(a) An item trigger is created and activated requiring
6 metal panels.

6. Councilmember Ithakis demands that the player run
an errand (perform a subquest) in return for the metal.

(a) A subquest trigger is created and activated.

7. Councilmember Ithakis asks the player to bring him a
lucerne leaf, which is used as an armor temper.

Figure 10: The structure of a sample quest.

(a) A null trigger activates and fires, causing the
council member to ask for a lucerne leaf.

8. Councilmember Ithakis directs the player to Farmer
Joen, who gives the player the leaf.

(a) A collection subquest is activated, which acti-
vates another null trigger which in turn directs
the player to Farmer Joen.

(b) A converse trigger is activated, looking for the
player to mention “need” to Farmer Joen.

(c) When the player says the magic word, the con-
verse trigger fires causing Farmer Joen to give the
player a leaf.

(d) A give trigger activates, requiring the player to
deliver the leaf to Councilmember Ithakis.

9. Councilmember Ithakis asks the player to tell an NPC
named Nech Ilya about finding lucerne leaves.

(a) Councilmember Ithakis demands that the player
inform Nech Ilya that he (Councilmember
Ithakis) now has a lucerne leaf.

(b) A subquest trigger activates, which in turn acti-
vates a proximity trigger around the area where
Nech Ilya will appear.

10. The player must find Nech Ilya, and speak with him.

(a) When the player enters the area covered by the
proximity trigger, it fires

(b) A signal is scheduled which will spawn Nech Ilya.

(c) Another signal is scheduled, which will periodi-
cally print a random tracking message and then
reschedule itself.

(d) Eventually Nech Ilya spawns, and all of the sig-
nals are canceled.

(e) A converse trigger is activated.

(f) When the player hails Nech Ilya, the converse
trigger fires. Nech Ilya thanks the player, and
the subquest completes.

11. The next time the player meets him, Councilmember
Ithakis gives them the metal panels.

(a) A null trigger fires, causing Councilmember
Ithakis to deliver the message.

12. Blacksmith Jones suggests that the player hunt green-
scale vipers to obtain a venom sac.

(a) A null trigger fires, causing Blacksmith Jones to
deliver the message.

(b) An acquire trigger is activated, waiting for 1 snake
venom sack to enter the player’s inventory.

13. The player must locate these snakes and begin killing
them. The snakes will rarely have an intact venom sac
once killed.

(a) When a venom sac enters the inventory, the ac-
quire trigger fires and the subquest completes.

14. The player delivers the materials to Blacksmith Jones,
who makes the armor piece.

15. Blacksmith Jones gives the new armor piece to the
player, and asks that they deliver it to an NPC named
Akins.

(a) A give trigger activates, waiting for the player to
give Akins the armor piece.

16. The player finds Akins and gives him the armor.

(a) When the player gives Akins the armor, the give
trigger completes, and the subquest completes.

17. Upon returning to Blacksmith Jones, the quest com-
pletes and the Blacksmith rewards the player.

8. CONCLUSION AND FUTURE WORK
We have demonstrated how procedurally generated quests
can be implemented in Everquest. In its current state, the
framework requires some input from a human designer in
the form of character names and dialog, which suggests that
we explore dialog generation techniques. At the same time
we observe that while a narrative can be written to explain
the quest graph, we suspect that players might prefer a more
traditional story arc.

References
[1] E. Aarseth. Quest Games As Post-Narrative Discourse.

Narrative Across Media: The Languages of Storytelling,
pages 361–376, 2004.

[2] C. Ashmore and M. Nitsche. The Quest in a Gen-
erated World. In Proc. 2007 Digital Games Research
Assoc.(DiGRA) Conference: Situated Play, pages 503–
509, 2007.

[3] C. Bateman and R. Boon. 21st Century Game Design
(Game Development Series). Charles River Media, Inc.,
Rockland, MA, USA, 2005.

[4] S. Caltagirone, M. Keys, B. Schlief, and M. J. Willshire.
Architecture for a Massively Multiplayer Online Role
Playing Game Engine. Journal of Computing Sciences
in Colleges, 18(2):105–116, 2002.

[5] M. D. Dickey. Game Design and Learning: A Conjec-
tural Analysis of How Massively Multiple Online Role-
playing Games (MMORPGs) Foster Intrinsic Motiva-
tion. Educational Technology Research and Develop-
ment, 55(3):253–273, 2007.

[6] J. Doran and I. Parberry. Controlled procedural ter-
rain generation using software agents. IEEE Transac-
tions on Computational Intelligence and AI in Games,
2(2):111–119, 2010.

[7] J. Doran and I. Parberry. A prototype quest genera-
tor based on a structural analysis of quests from four
MMORPGs. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games,
pages 1–8. ACM, 2011.

[8] J. Grey and J. J. Bryson. Procedural Quests: A Focus
for Agent Interaction in Role-Playing Games. In Pro-
ceedings of the AISB 2011 Symposium: AI & Games,
pages 3–10. University of Bath, 2011.

[9] S. Joslin, R. Brown, and P. Drennan. Modelling Quest
Data for Game Designers. In Proceedings of the 2006
International Conference on Game Research and De-
velopment, pages 184–190. Murdoch University, 2006.

[10] B. Kybartas. Design and Analysis of ReGEN. PhD
thesis, McGill University, 2013.

[11] A. A. Reed, B. Samuel, A. Sullivan, R. Grant, A. Grow,
J. Lazaro, J. Mahal, S. Kurniawan, M. A. Walker, and
N. Wardrip-Fruin. A Step Towards the Future of Role-
Playing Games: The SpyFeet Mobile RPG Project. In
Proceedings of the Seventh Artificial Intelligence and
Interactive Digital Entertainment Conference, 2011.

[12] J. Smed, T. Kaukoranta, and H. Hakonen. Aspects
of Networking in Multiplayer Computer Games. Elec-
tronic Library, The, 20(2):87–97, 2002.

[13] G. Smith, R. Anderson, B. Kopleck, Z. Lindblad,
L. Scott, A. Wardell, J. Whitehead, and M. Mateas.
Situating Quests: Design Patterns for Quest and Level
Design in Role-Playing Games. In Interactive Story-
telling, pages 326–329. Springer, 2011.

[14] A. Sullivan, M. Mateas, and N. Wardrip-Fruin. Mak-
ing Quests Playable: Choices, CRPGs, and the Grail
Framework. Leonardo Electronic Almanac, 2011.

[15] E. Tomai, R. Salazar, and D. Salinas. A MMORPG
Prototype for Investigating Adaptive Quest Narratives
and Player Behavior. In Proceedings of the Interna-
tional Conference on the Foundations of Digital Games.
ACM, 2012.

[16] E. Tomai, R. Salazar, and D. Salinas. Adaptive Quests
for Dynamic World Change in MMORPGs. In Proceed-
ings of the International Conference on the Foundations
of Digital Games, pages 286–287. ACM, 2012.

[17] R. Tronstad. A matter of insignificance: The MUD

puzzle quest as seductive discourse. CyberText Year-
book, 2002–2003.

[18] N. Wardrip-Fruin, M. Mateas, S. Dow, and S. Sali.
Agency Reconsidered. Breaking New Ground: Innova-
tion in Games, Play, Practice and Theory. Proceedings
of DiGRA 2009, 2009.

[19] A. Zook, S. Lee-Urban, M. O. Riedl, H. K. Holden,
R. A. Sottilare, and K. W. Brawner. Automated Sce-
nario Generation: Toward Tailored and Optimized Mil-
itary Training in Virtual Environments. In Proceedings
of the International Conference on the Foundations of
Digital Games, pages 164–171. ACM, 2012.

	LARC-2015-01 cover
	everquests

