

Tobler's First Law of Geography, Self Similarity,
and Perlin Noise: A Large Scale Analysis of

Gradient Distribution in Southern Utah with
Application to Procedural Terrain Generation

 Ian Parberry

Technical Report LARC-2014-04

Laboratory for Recreational Computing
Department of Computer Science & Engineering

University of North Texas
Denton, Texas, USA

June 2014

Tobler’s First Law of Geography, Self Similarity,
and Perlin Noise: A Large Scale Analysis of
Gradient Distribution in Southern Utah with
Application to Procedural Terrain Generation

Ian Parberry
Department of Computer Science & Engineering

University of North Texas
Denton, TX, 76203–5017

URL: http://larc.unt.edu/ian

Abstract—A statistical analysis finds that in a 160,000 square
kilometer region of southern Utah gradients appear to be expo-
nentially distributed at resolutions from 5m up to 1km. A simple
modification to the Perlin noise generator changing the gradient
distribution in each octave to an exponential distribution results
in realistic and interesting procedurally generated terrain. The
inverse transform sampling method is used in the amortized noise
algorithm to achieve an exponential distribution in each octave,
resulting in the generation of infinite non-repeating terrain with
the same characteristics.

Index Terms—1/f noise, Digital Elevation Model (DEM),
exponential distribution, fractal, geospatial analysis, gradient dis-
tribution, heightmap, Perlin noise, procedural content generation,
procedural terrain generation, self-similarity, sigmoid, United
States Geographical Survey (USGS), Utah.

I. INTRODUCTION

Games such as Minecraft1 take place in an artificially
generated terrain. The task of generating this content is called
procedural terrain generation. As noted in Smelik et al. [1],
procedural terrain generation is often based on fractal noise
generators such as Perlin noise (for more details see, for
example, Ebert et al. [2]). We show how to make terrain
generated from fractal noise more realistic by incorporating
observations from a statistical analysis of gradients in Utah.

Tobler’s First Law of Geography [3] states that “All things
are related, but nearby things are more related than distant
things”. In this spirit, we investigate how related nearby and
distant terrain gradients are over an area of 160,000 square
kilometers in Utah. Utah was chosen because it has both
mountainous and flat terrain, and because the Utah Automated
Geographic Reference Center2 has correlated elevation data
for the state of Utah from the United States Geological
Survey with digital satellite images. It is thus easy to tell
at a glance whether a region is mountainous or flat. We
make some interesting observations about gradients in Utah,
including that the average gradient when plotted as a function

1https://minecraft.net/
2http://gis.utah.gov/data/

of (exponentially) increasing distance between sample points
describes a sigmoid curve, and that the gradients conform to
an exponential distribution.

In earlier work we analyzed elevation data from a much
smaller area of Utah and showed how the height distribution
from a specific area chosen by a designer for its interest can
be incorporated into a version of Perlin noise called value
noise [4]. The work in this paper, in contrast, shows how
realistic terrain can be generated by varying the exponent of
an exponential gradient distribution, resulting in direct control
of the ruggedness of the generated terrain.

More information about the subject of this paper, including
more terrain images, can be found at http://larc.unt.edu/ian/
research/tobler/.

II. ANALYSIS OF GRADIENTS IN SOUTHERN UTAH

We performed a statistical analysis of gradients computed
from elevation data in the Digital Elevation Model (DEM)
format at 5m resolution from the Utah Automated Geographic
Reference Center. Our data set consists of 400 text files each
containing the elevation of points on a 4000× 4000 grid at 5
meter resolution, giving a total of 6.4 billion elevations over
the square of side 400km within the southern part of the US
state of Utah shown in Fig. 1. Each elevation value is given
to one decimal place in meters. These files occupy a total
of 51GB on disk. The analysis was performed by a program
written by the author in he programming language C++.

A. Analysis at 5m Resolution

While coping with a 51GB data set is not a trivial matter,
it is not out of range of the current generation of desktop
computers. It took 41 minutes to read and parse the data with
fscanf into a square array of floats occupying 25.6GB
of memory on an Intel R© CoreTM i7-3930K CPU @ 3.2GHz
with 32GB of RAM and a solid state hard drive. After doing
so for the first time we found that the minimum elevation
in the area sampled is 436.3 meters, the maximum elevation
is 4120.9 meters, and the average elevation is 1888.7 meters.

1

https://minecraft.net/
http://gis.utah.gov/data/
http://larc.unt.edu/ian/research/tobler/
http://larc.unt.edu/ian/research/tobler/

Fig. 1: The area chosen for the gradient study in the US state
of Utah. Each of the 400 squares represents a single DEM file
containing height data for a 2000× 2000 grid of points.

This means that each height value in decimeters will fit into an
unsigned short which requires 2 bytes as opposed to the
4 bytes used for a float, reducing the memory footprint to
12.8GB. Saving the elevation data as a raw binary file halved
the amount of disk space required and allowed us to read it
with a single call to fread in under 5 seconds.

The magnitude3 of the average gradient over the 160,000
square kilometer area inside the white box in Figure 1 is
quite low at 0.1461. The distribution of gradients might be
expected to be a normal distribution centered around the
average gradient, but it is actually quite close to an exponential
distribution as shown in Figure 2.

B. Analysis at 5m–164km Resolution

Motivated by the study of 1/f noise (see, for example, [5],
[6]) we will look for self-similarity in gradient by analyzing
the elevation data in a series of octaves. Octave 1 will be the
original data at 5m separation. Octave 2 samples every second
point, giving a 10m separation. For 1 ≤ i ≤ 16, octave i
samples every 2ith point, giving a separation of 5× 2i meters

3Since the designation of terrain gradient as being uphill or downhill is
dependent on the orientation of the observer, we will treat gradient as an
unsigned value and for the sake of convenience we will omit the word
“magnitude” for the rest of this paper.

Fig. 2: Gradient distribution at 5m resolution.

Fig. 3: A list of octaves, the distance between sample points
in that octave, and some examples of objects of that size.

(see Figure 4). To give a sense of scale, Figure 3 gives a list
of octaves, the corresponding distance between sample points,
and some examples of objects of that size.

To avoid loss of statistical significance with each succes-
sive octave, each grid size was sampled four times, once
as described, and once each offset by half the separation
distance horizontally, vertically, and diagonally. The number
of sampled grids therefore increases exponentially with octave,
offsetting the exponential decrease in the number of points in
each grid (see Figure 5). Suppose, for example, the first octave
has an n × n grid of n2 points, where n is odd (the case
where n is even is similar and is left as an exercise for the
reader). The second octave has four grids, one of dimension
dn/2e × dn/2e (the blue grid in Figure 5), one of dimension
bn/2c×bn/2c (the gray grid in Figure 5, left), one of dimen-
sion dn/2e×bn/2c (the gray grid in Figure 5, center), and one
of dimension bn/2c×dn/2e (the gray grid in Figure 5, right),
giving a total of dn/2e2+2dn/2ebn/2c+bn/2c2 = n2−O(n)
sample points for the second octave, etc.

Clearly the average gradient cannot increase from one
octave to the next. The average gradient may stay constant
from one octave to the next in the contrived case of terrain
that slopes uniformly. For example, consider the terrain shown
in Figure 6 (top). When sampled over the octave shown in
Figure 6 (center), the gradient in each interval is 0.25, and
hence the average gradient for the octave is also 0.25. When

2

Fig. 4: Example of sampling grids for three successive octaves.

Fig. 5: To avoid loss of statistical significance with each
successive octave, each grid is sampled four times in total,
offset by half the grid separation distance.

sampled over the next octave, which is shown in Figure 6
(bottom), the gradient in each interval is again 0.25, and hence
the average gradient for the octave is also 0.25. The average
gradient in this example therefore remains constant at 0.25
from one octave to the next.

The average gradient may drop quite precipitously from
one octave to the next in the contrived case of a series of
mountains or hills with a wavelength equal to the distance
between sample points. For example, consider the terrain

Fig. 6: Example of terrain with gradient that remains constant
from one octave to the next. Top: The terrain. Center: When
sampled at the points in the first octave, the average gradient is
0.25. Bottom: When sampled at the points in the next octave,
the average gradient is still 0.25.

Fig. 7: Example of terrain with gradient that decreases dras-
tically from one octave to the next. Top: The terrain. Center:
When sampled at the points in the first octave, the average
gradient is 0.25. Bottom: When sampled at the points in the
next octave, the average gradient falls to zero.

Fig. 8: Maximum gradient by octave.

shown in Figure 7 (top). When sampled over the octave shown
in Figure 7 (center), the gradient in each interval is 0.25, and
hence the average gradient for the octave is also 0.25. When
sampled over the next octave, which is shown in Figure 7
(bottom), the gradient in each interval is 0, and hence the
average gradient for the octave is also 0. The average gradient
has in this example has therefore dropped from 0.25 in one
octave to zero in the next. In general though, we expect the
gradient to decrease from one octave to the next between these
two extremes.

This analysis took under 16 minutes elapsed time on an
Intel R© CoreTM i7-3930K CPU @ 3.2GHz with 32GB of RAM
and a solid state hard drive. Figure 8 shows the maximum gra-
dient by octave, which remains fairly steady for octaves 1–9.
At octave 10 it starts to drop because the distance between the
sample points is 5× 210 = 5120 meters, while the maximum
height difference is at most 4121−436 = 3685 meters, giving
a maximum gradient of approximately 3685/5120 ≈ 0.72.
Thereafter the maximum gradient drops exponentially with
octave since the horizontal distance between sample points
increases exponentially yet the maximum height difference can

3

Fig. 9: Average gradient by octave.

Fig. 10: Gradient distribution for octaves 1–9, at resolutions
from 5m to 1.28km.

be no more than 3685 meters.
The average gradient is in general quite small, and when

plotted by octave it appears to follow an s-shaped curve (see
Figure 9). Octave 8 is a turning point at which the second
derivative changes sign from positive to negative. Gradient
distributions for octaves 1–9 are shown in Figure 10 (the
gradient distribution for octave 1 has already been seen in
Figure 2). All appear at least superficially to be an exponential
curve.

III. PERLIN NOISE

Perlin noise was developed by Ken Perlin [5], [6] as a source
of continually varying smooth random noise. It has found use
in many applications including texture generation and terrain
generation.

A. Standard Perlin Noise

Formally, the 2D Perlin noise function h : R2 → [−1, 1].
The Perlin noise algorithm starts by pre-computing a table g2
of unit gradients and a random permutation p to be used as a
hash function. To find a noise value y at (x, z) ∈ R2, it first
finds the four closest integer points (bxc, bzc), (bxc+ 1, bzc),

0. Input ~p = [x, y]
1. sx = s curve(x)
2. sy = s curve(y)
3. a = lerp(sx, ~p · ~g00, ~p · ~g01)
4. b = lerp(sx, ~p · ~g10, ~p · ~g11)
5. Output lerp(sy, a, b)

TABLE I: The 2D Perlin noise algorithm.

0. Input ~p = [x, y]
1. sx = s curve(x)
2. sy = s curve(y)
3. a = lerp(sx,m00~p · ~g00,m01~p · ~g01)
4. b = lerp(sx,m10~p · ~g10,m11~p · ~g11)
5. Output lerp(sy, a, b)

TABLE II: The 2D Perlin noise algorithm with gradient
magnitude.

(bxc, bzc+ 1), and (bxc+ 1, bzc+ 1), where for all x ∈ R+,
bxc ∈ Z+ is the smallest integer that does not exceed x. It
then combines values from g2 evaluated at these using the
pre-computed permutation table p, interpolates between them
to (x, z) and smooths using cubic splines.

To obtain interesting noise we sum noise values from the
2D Perlin noise function at various frequencies and amplitudes
in a process called 1/f noise or turbulence. Noise at a single
frequency is called an octave. The amplitude is multiplied by
the persistence (usually 0.5) from one octave to the next. The
frequency is multiplied by the lacunarity (usually 2) from one
octave to the next.

For terrain generation, a Perlin noise value y = h(x, z) is
normalized to [0, 1], multiplied by a scale value ∆ and used
as the height of the terrain h′(x, z) = ∆(h(x, z) + 1)/2 for
each point (x, z) in the 2D Cartesian plane. Figure 11 shows
terrain generated with 8 octaves of Perlin noise. (All images of
terrain in this paper were rendered offline by Terragen 34 from
a DEM file generated using the algorithms described here.)
Although 2D Perlin noise is invariably described as having
range [−1, 1], it is relatively easy to prove that the range is
more properly [−γ, γ], where γ = 1/

√
2 ≈ 0.7071. This is

easily rectified by multiplying the output by
√

2 ≈ 1.4142.
Table I gives pseudocode for Perlin’s noise2 function.

B. Exponentially Distributed Perlin Noise

We add an array of scalar magnitudes of the same size
as the gradient array, and preload it with the appropriate
values. Let m00, m10, m01, and m11 be the magnitudes at
the integer corner points with gradients ~g00, ~g10, ~g01, and
~g11, respectively. We then modify Perlin’s 2D noise function
as shown in Table II. Since we learned in Section II that
the gradient distribution in every octave of southern Utah
is an exponential curve, we fill the magnitude table with
exponentially decreasing values using the following snippet

4http://planetside.co.uk/products/terragen3

4

http://planetside.co.uk/products/terragen3

Fig. 11: Terrain generated using exponentially distributed
Perlin noise with µ = 1, which is identical to classical Perlin
noise.

of C code, in which MU is a floating point value µ such that
µ ≥ 1.

float m[B]; //magnitude table
const float MU = 1.01f; //for example
float s = 1.0f; //current magnitude
for(int i=0; i<B; i++){ //for each entry
m[i] = s; //set i’th magnitude
s /= MU; //decrease next magnitude

} //for

The smallest value in the gradient magnitude table m, which
is m[B-1] = µB−1, should be one that actually be repre-
sented as a floating point number. The smallest normalized
floating point value is 2−(2

f−2), where f is the number
of bits in the exponent (f = 7 for a float, f = 10
for a double). We therefore want µB−1 ≤ 22

f−2, that is,
µ ≤ 2(2

f−2)/(B−1). Using the standard implementation of
Perlin noise with floats and B = 256 means that we should
ensure that µ ≤ 2126/256 < 1.1637.

Figures 11, 12, 13, 14, and 15 show terrain generated
using 8 octaves of exponentially distributed Perlin noise and,
respectively, µ = 1, 1.002, 1.007, 1.02, and 1.05. These
examples were generated using the same random number seed
and were rendered from the same location with the same
camera orientation, and therefore they clearly illustrate the
effect of changing the parameter µ. Notice that although the
terrain gets generally flatter as µ increases, not all gradients
are decreased at the same rate. Figure 16 shows the maximum
and minimum elevations for a random 4096×4096 terrain with
∆ = 5000 against µ. Notice that the maximum and minimum
elevations are at least 800 meters apart for 1 ≤ µ ≤ 1.16.

IV. AMORTIZED NOISE

Perlin noise repeats with period nB, where B is the size
of Perlin’s gradient table (commonly chosen to be 256),

Fig. 12: Terrain generated using exponentially distributed
Perlin noise with µ = 1.002.

Fig. 13: Terrain generated using exponentially distributed
Perlin noise with µ = 1.007.

Fig. 14: Terrain generated using exponentially distributed
Perlin noise with µ = 1.02.

5

Fig. 15: Terrain generated using exponentially distributed
Perlin noise with µ = 1.05.

Fig. 16: Maximum and minimum elevations for a random
4096× 4096 terrain with ∆ = 5000.

and n is the number of points between integer values. This
means that any supposedly “infinite terrain” generated from
Perlin noise will in fact repeat. The author of this paper
has shown recently [7] a fast method for generate potentially
infinite non-repeating 2D noise called amortized noise. Infinite
amortized noise uses gradient ~g([x, y]) = [cos θ, sin θ], where
θ = h(232x + y) and h is the the open source hash function
MurmurHash35. The magnitudes of the gradient vectors are,
as with Perlin noise, always equal to unity.

A. Exponentially Distributed Hash Functions

The modification to amortized noise requires the compu-
tation of a gradient magnitude for each grid point, that is,
we need a function that hashes the (x, y) co-ordinates of
integer points into the real interval (0, 1) with an exponential
distribution. As far as the author is aware, the term hash
function has until now meant a function that maps its domain

5 https://code.google.com/p/smhasher/wiki/MurmurHash3

Fig. 17: The distribution of 107 calls to ExpHash(rand(),
MAX_RND).

pseudorandomly into its range with as near to a uniform
distribution as possible. Here we generalize this concept to a
function that maps its domain pseudorandomly into its range
with as near to a given target distribution as possible. For
definiteness, we will use the term uniform hash function for the
standard hash function whose target is the uniform distribution,
and exponentially distributed hash function for one whose
target is the exponential distribution.

We will use the following typedef to make sure that our
code does not wrap over the end of a line.

typedef unsigned int uint ;

Function NHash takes a uniformly hashed value x between
zero and max and normalizes it to the interval (0, 1). For
MurmurHash3, max is the largest 32-bit unsigned int,
that is, 232 − 1 = 0xFFFFFFFF.

float NHash(uint x, uint max){
return ((float)x+1.0f)/((float)max+2.0f);

} //NHash

Function ExpHash takes a uniformly hashed value x between
zero and max and transforms it to a value chosen from the
interval (0, 1) using an exponential distribution. The inverse
transform sampling method says that to achieve an exponential
distribution, apply the inverse of the cumulative probability
density function (that is, the logarithm) to values sampled
uniformly from (0, 1).

float ExpHash(uint x, uint max){
static const float s =
1/log(0.5f*((float)max + 2.0f));

return -s*log(0.5f*(float)x+1.0f) + 1.0f;
} //ExpHash

Figure 17 shows the distribution of 107 calls to
ExpHash(rand(), MAX_RND).

6

https://code.google.com/p/smhasher/wiki/MurmurHash3

Fig. 18: The distribution of 107 calls to ExpHash(rand(),
MAX_RND, ω).

The second version of ExpHash has a floating point
parameter omega used to raise the tail of the exponential
distribution by a fraction ω with 0 < ω ≤ 1.

float ExpHash(uint x, uint y, uint max,
float omega)

{
return NHash(y, max) < beta?
NHash(x, max): ExpHash(x, max);

} //ExpHash

Figure 18 shows the distribution of 107 calls to
ExpHash(rand(), MAX_RND, omega) for
omega= 0.0, 0.3, 0.5, 0.7.

B. Exponentially Distributed Amortized Noise

The amortized noise algorithm [7] uses the following func-
tion initEdgeTables to initialize a set of tables called
edge tables.

void initEdgeTables(const int x0,
const int y0, const int n)

{
//compute gradients at corner points
uint b00 = h(x0, y0);
uint b01 = h(x0, y0+1);
uint b10 = h(x0+1, y0);
uint b11 = h(x0+1, y0+1);

//fill gradient tables from corners
FillUp(uax, cosf((float)b00), n);
FillDn(vax, cosf((float)b01), n);
FillUp(ubx, cosf((float)b10), n);
FillDn(vbx, cosf((float)b11), n);
FillUp(uay, sinf((float)b00), n);
FillUp(vay, sinf((float)b01), n);
FillDn(uby, sinf((float)b10), n);
FillDn(vby, sinf((float)b11), n);

} //initEdgeTables

It calls the following 2D hash function h based on Mur-
murHash3 on a stored seed.

uint h(const uint x, const uint y){
uint result;
unsigned long long key =
((unsigned long long)x<<32) | y;

MurmurHash3_32(&key, 8, seed, &result);
return result;

} //h

We modify this code as follows. Instead of using a single hash
seed seed, we use three seeds s0, s1, and s2. s0, like the
original seed, is a hash seed for gradient orientation, s1 is a
hash seed for gradient magnitude, and s2 is a hash seed for
the tail of the gradient magnitude distribution. Function h2 is
modified to use the seed as a parameter.

uint h(const uint x, const uint y,
const uint s)

{
uint result;
unsigned long long key =
((unsigned long long)x<<32) | y;

MurmurHash3_32(&key, 8, s, &result);
return result;

} //h

The initial block of code in function initEdgeTables
above for computing b00, b01, b10, and b11 is replaced
by the following.

//compute gradients at corner points
uint b00 = h(x0, y0, s0);
uint b01 = h(x0, y0+1, s0);
uint b10 = h(x0+1, y0, s0);
uint b11 = h(x0+1, y0+1, s0);

We then insert the following new block of code for computing
gradient magnitudes m00, m01, m10, and m11.

//compute magnitudes at corner points
const uint M = 0xFFFFFFFF;
float m00 = ExpHash(h(x0, y0, s1),
h(x0, y0, s2), M, omega);

float m01 = ExpHash(h(x0, y0+1, s1),
h(x0, y0+1, s2), M, omega);

float m10 = ExpHash(h(x0+1, y0, s1),
h(x0+1, y0, s2), M, omega);

float m11 = ExpHash(h(x0+1, y0+1, s1),
h(x0+1, y0+1, s2), M, omega);

Finally, the last block of code in function initEdgeTables
above, which fills the edge tables, is replaced by the following:

//fill gradient tables from corners
FillUp(uax, m00 * cosf((float)b00), n);

7

FillDn(vax, m01 * cosf((float)b01), n);
FillUp(ubx, m10 * cosf((float)b10), n);
FillDn(vbx, m11 * cosf((float)b11), n);
FillUp(uay, m00 * sinf((float)b00), n);
FillUp(vay, m01 * sinf((float)b01), n);
FillDn(uby, m10 * sinf((float)b10), n);
FillDn(vby, m11 * sinf((float)b11), n);

Figures 19, 20, 21, and 22 show terrain generated using
8 octaves of exponentially distributed amortized noise and,
respectively, ω = 0.5, 0.4, 0.3, and 0.2. These examples
were generated using the same random number seed and
were rendered from the same location with the same camera
orientation, and therefore they clearly illustrate the effect of
changing the parameter ω. Notice that although the terrain gets
generally flatter as ω increases, not all gradients are decreased
at the same rate.

V. CONCLUSION AND FURTHER WORK

We have shown that the average gradient in a large area
of southern Utah when plotted as a function of increasing
distance describes an s-shaped curve, and that the gradients
in each octave are roughly exponentially distributed. We have
also shown how to make terrain generated from Perlin noise
more realistic by using these observations to tune the output
of the 2D Perlin noise generation algorithm, and shown that
the same modifications can be applied to amortized noise [7]
to obtain infinite nonrepeating terrain.

Some interesting open questions remain. We conjecture
that gradients are exponentially distributed in all areas of the
world. However, a close examination of Figure 10 reveals
some interesting lumps and bumps (at gradients 0.28–0.34, for
example). These may not be significant, but on the other hand
they may be unique to the area under study. It is interesting to
ask whether any of the local variations in gradient distribution
can be used to generate particular kinds of terrain, in the
same way that local variations in height distribution can be

Fig. 19: Terrain generated using exponentially distributed
amortized noise with ω = 0.5.

Fig. 20: Terrain generated using exponentially distributed
amortized noise with ω = 0.4.

Fig. 21: Terrain generated using exponentially distributed
amortized noise with ω = 0.3.

Fig. 22: Terrain generated using exponentially distributed
amortized noise with ω = 0.2.

8

used by a designer to generate terrain suggestive of particular
geographical areas [4].

REFERENCES

[1] R. M. Smelik, K. J. De Kraker, T. Tutenel, R. Bidarra, and S. A.
Groenewegen, “A survey of procedural methods for terrain modelling,” in
Proceedings of the CASA Workshop on 3D Advanced Media in Gaming
and Simulation (3AMIGAS), 2009.

[2] D. Ebert, S. Worley, F. Musgrave, D. Peachey, and K. Perlin, Texturing
& Modeling, a Procedural Approach, 3rd ed. Elsevier, 2003.

[3] W. Tobler, “A computer movie simulating urban growth in the Detroit
region,” Economic Geography, vol. 46, no. 2, pp. 234–240, 1970.

[4] I. Parberry, “Designer worlds: Procedural generation of infinite terrain
from real-world elevation data,” Journal of Computer Graphics Tech-
niques, vol. 3, no. 1, pp. 74–85, 2014.

[5] K. Perlin, “An image synthesizer,” in Proceedings of the 12th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH).
ACM, 1985, pp. 287–296.

[6] ——, “Improving noise,” in Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH). ACM,
2002, pp. 681–682.

[7] I. Parberry, “Amortized noise,” Journal of Computer Graphics Techniques,
p. To Appear, 2014.

INDEX OF SUPPLEMENTAL MATERIALS

Source code and data is available under the GNU All-
Permissive License at https://github.com/Ian-Parberry/Tobler.
There you will find five folders, each of which contains a
program that will help you to reproduce the results of this
paper. You will find full C++ source code that compiles under
both Visual Studio 2012 and gcc. Each folder contains a
Microsoft Visual Studio 2012 project and a Unix makefile.

1) Generate with Perlin Noise. If you wish to
generate terrain using Perlin noise with an exponential
gradient distribution from Section III, then compile and
run the program in this folder which will generate random
terrain in a DEM file output.asc. You will also find
a Terragen project file output.asc that can be used to
render the terrain from output.asc. A subfolder called
Terrain Images contains copies of Figures 11, 12,
13, 14, 15, and some supplementary images.

2) Generate with Amortized Noise. This folder
contains a second version of the Generate program using

amortized noise [7] with the modifications from Sec-
tion IV. A subfolder called Terrain Images contains
copies of Figures 19, 20, 21, 22, and some supplementary
images.

3) Exponential Distribution. If you wish to verify
the code for generating exponentially distributed random
numbers from Section IV, then compile and run the
program in this folder. An Excel spreadsheet called
exponential.xlsx contains a copy of the data gen-
erated by this program used to generate Figure 17 and
Figure 18.

4) Pack. If you wish to go further and verify the gradient
analysis in Section II, then begin by downloading the
DEM files listed in filelist20x20.txt from the
Utah Automated Geographic Reference Center at http://
gis.utah.gov/data/. You will need approximately 51GB of
disk space to store these files. Compile and run the Pack
program, which will read the DEM data and pack it into
a binary file UtahDEMData.bin for faster processing.
You will need an additional 11GB of disk space to store
this file, but the 51GB of DEM files that you downloaded
may be deleted after this step.

5) Analyze. Continuing verification of the gradient anal-
ysis in Section II, after running the Pack program
above, move the resulting packed binary data file
UtahDEMData.bin from the Pack folder to the
Analyze folder, then compile and run the Analyze
program. The results will be placed in output.txt.
An Excel spreadsheet called utah20x20.xlsx con-
tains the data from output.txt and the graphs from
Figures 2, 8, 9, and 10.

The code quoted in this paper differs slightly from the code in
the GitHub archive in that the former is simplified to fit within
the tight width restrictions of this medium, while the latter is
engineered for comprehension and use by programmers in the
real world. Links to Doxygen-generated documentation of the
source code can be found at http://larc.unt.edu/ian/research/
tobler/.

9

https://github.com/Ian-Parberry/Tobler
http://gis.utah.gov/data/
http://gis.utah.gov/data/
http://larc.unt.edu/ian/research/tobler/
http://larc.unt.edu/ian/research/tobler/

	Introduction
	Analysis of Gradients in Southern Utah
	Analysis at 5m Resolution
	Analysis at 5m–164km Resolution

	Perlin Noise
	Standard Perlin Noise
	Exponentially Distributed Perlin Noise

	Amortized Noise
	Exponentially Distributed Hash Functions
	Exponentially Distributed Amortized Noise

	Conclusion and Further Work
	References

