
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amortized Noise 

Ian Parberry 

Technical Report LARC-2013-03 

Laboratory for Recreational Computing 
Department of Computer Science & Engineering 

University of North Texas 
Denton, Texas, USA 

September, 2013 

 

 



Amortized Noise
Ian Parberry

Department of Computer Science & Engineering
University of North Texas
Denton, TX, 76203–5017

URL: http://larc.unt.edu/ian

Abstract—A new noise generation algorithm called amortized
noise generates smooth noise using dynamic programming tech-
niques to amortize the cost of floating point multiplications over
neighboring points. The amortized 2D noise algorithm uses a
factor of 17/3 ≈ 5.67 fewer floating point multiplications than
the 2D Perlin noise algorithm, resulting in a speedup by a factor
of 3 in practice on current desktop computing hardware. The
amortized 3D noise algorithm uses a factor of 40/7 ≈ 5.71 fewer
floating point multiplications than the 3D Perlin noise algorithm,
but the increasing overhead for the initialization of tables limits
the speedup factor achieved in practice to around 2. In addition to
being significantly faster, amortized noise is less prone to repeat
at regular intervals than Perlin noise, and it is smoother since it
uses quintic splines in place of cubic splines.

Index Terms—Amortized analysis, dynamic programming, in-
finite noise, Perlin noise, Simplex noise.

I. INTRODUCTION

Perlin noise [1] was developed as a source of smooth
random noise for use in applications such as procedural texture
generation and modeling (see, for example, Ebert et al. [2]).
The code is heavily optimized since applications typically call
it often. Although the results of each call to the Perlin noise
function are computed independently of every other call, most
applications use it to fill in a grid of noise values at regularly
spaced points. We are able to take advantage of this typical
call pattern to amortize the computation cost of Perlin noise
using dynamic programming techniques1. We will refer to our
new algorithm as amortized noise.

The remainder of this paper is divided into six main
sections. Section II gives some definitions and notation to be
used throughout the rest of the paper. Section III describes
the amortized 2D noise generator in some detail and includes
a sketch of a correctness proof. Section IV describes the
amortized 3D noise generator in slightly less detail. Section V
contains some observations about infinite amortized noise.
For more information about amortized noise, including source
code, see Parberry [4].

II. NOTATION

Let R denote the set of real numbers, and N denote the set
of natural numbers starting at zero. Let U denote the real line
segment from 0 to 1 and U± denote the real line segment from
−1 to 1, that is, U = {x ∈ R | 0 ≤ x ≤ 1}, U± = {i/n | i ∈

1Cormen et al. [3] attribute the term amortized to Danny Sleator and Robert
Tarjan, and the term dynamic programming to R. Bellman in 1955.

Set Definition
N Natural numbers ∪{0}
R Real numbers
U {x ∈ R | 0 ≤ x ≤ 1}
U± {x ∈ R | − 1 ≤ x ≤ 1}
Un {i/n | i ∈ N} ∩ U

TABLE I: The sets used in this paper and their definitions.

Fig. 1: 2D Perlin noise interpolates and smooths between
pseudorandom gradients at integer grid points.

N} ∩ U. Suppose n ∈ N. Let Un be the set of n+ 1 evenly-
spaced points from U, that is, Un = {i/n | i ∈ N} ∩ U. This
notation is summarized in Table I for the reader’s convenience.

If S is a set, then for n ≥ 1, Sn denotes the n-wise Cartesian
product of S, Sn = S × S × · · · × S.

III. 2D NOISE

The 2D Perlin noise algorithm computes a function P2 :
U×U→ U±. To compute P2(x, y) it chooses pseudorandom
gradients ~g00 = [x00, y00], ~g01 = [x01, y01], ~g10 = [x10, y10],
and ~g11 = [x11, y11] at integer points [0, 0], [0, 1], [1, 0],
and [1, 1] (respectively) and interpolates and smooths between
them as shown in Fig. 1. Table II shows some pseudocode
for one octave of the 2D Perlin noise generator on input
~p = [x, y] ∈ U × U. It uses a cubic spline function
s curve(x) = x2(3 − 2x) and a linear interpolation function
lerp(ε, x, y) = x+ ε(y− x). While the Perlin noise algorithm
computes ua(~p) for any vector ~p ∈ U×U, in practice we only
need to compute it for ~p ∈ Un × Un for some n ∈ N. Call n
the noise granularity and let δ = 1/n, δ ∈ R.

The remainder of this section is divided into three sub-
sections. Section III-A sketches the mathematical background



0. Input ~p = [x, y]
1. sx = s curve(x)
2. sy = s curve(y)
3. a = lerp(sx, ~p · ~g00, ~p · ~g01)
4. b = lerp(sx, ~p · ~g10, ~p · ~g11)
5. Output lerp(sy, a, b)

TABLE II: The 2D Perlin noise algorithm.

for amortized 2D noise and a proof of its correctness. Sec-
tion III-B describes the implementation of amortized 2D noise.
Section III-C contains both a theoretical and an experimental
analysis of the run-time of amortized 2D noise compared to
2D Perlin noise.

A. Amortized 2D Noise

Amortized 2D noise follows the general structure of the
Perlin noise algorithm shown in Table II, with the following
optimizations. The s curve function calls in Lines 1 and 2 are
replaced with a table look-up, since only the n + 1 values
of s curve(x) for x ∈ Un are needed. In Lines 3–4 the dot
products are replaced by additions as follows.

Definition 1. For all ~p ∈ Un × Un, define ua(~p) as follows.
1) ua(0, 0) = 0.
2) For all γ ∈ Un, ua(0, γ) = γx00.
3) For all γ ∈ Un, ua(γ, 0) = γy00.
4) For all γ ∈ Un,

ua(0, γ) = ua(0, γ − δ) + ua(0, γ).

5) For all γ ∈ Un,

ua(γ, 0) = ua(γ − δ, 0) + ua(γ, 0).

6) For all γ0, γ1 ∈ Un,

ua(γ0, γ1) = ua(γ0, 0) + ua(0, γ1).

Theorem 1. For all ~p ∈ Un × Un, ua(~p) = ~p · ~g00.

Proof: We are required to prove that for all i, j ∈ N
such that 0 ≤ i, j ≤ n, ua(iδ, jδ) = (x00i + y00j)δ. When
i = j = 0 the claim is true by Definition 1.1.

We will now prove the claim for i = 0 and all j > 0, that
is, for all j ∈ N such that 1 ≤ j ≤ n, ua(0, jδ) = y00jδ. The
proof is by induction on j. When j = 1 the claim is true by
Definition 1.3. Now suppose j ≥ 1 and that the claim is true
for j, that is, ua(0, jδ) = y00jδ. We are required to prove that
the claim is true for j+1, that is, ua(0, (j+1)δ) = y00(j+1)δ.
Now,

ua(0, (j + 1)δ)
= ua(0, jδ) + ua(0, jδ) (by Definition 1.4)
= ua(0, jδ) + y00δ (by Definition 1.3)
= y00jδ + y00δ (by induction)
= y00(j + 1)δ (as required).
The proof of the claim for i > 0, j = 0 is similar to

the above, substituting Definition 1.5 and Definition 1.2 for
Definition 1.4) and Definition 1.3, respectively.

Now suppose 0 < i, j ≤ n. Then,
ua(iδ, jδ)

= ua(iδ, 0) + ua(0, jδ) (by Definition 1.6)
= x00iδ + y00jδ (by the above)
= g00 · [i, j]δ (as required).

This completes the proof.

Definition 2. For all ~p ∈ Un × Un, define va(~p) as follows.
1) va(0, 1) = 0.
2) For all γ ∈ Un, va(0, 1− γ) = γx10.
3) For all γ ∈ Un, va(γ, 1) = γy01.
4) For all γ ∈ Un,

va(γ, 1) = va(γ − δ, 1) + va(γ, 1).

5) For all γ ∈ Un,

va(0, γ) = va(0, γ + δ) + va(0, 1− δ).

6) For all γ0, γ1 ∈ Un,

va(γ0, γ1) = va(γ0, 1) + va(0, γ1).

Theorem 2. For all ~p ∈ Un × Un, va(~p) = ~p · ~g01.

The proof is similar to that of Theorem 1.

Definition 3. For all ~p ∈ Un × Un, define ub(~p) as follows.
1) ub(1, 0) = 0.
2) For all γ ∈ Un, ub(1, γ) = γx10.
3) For all γ ∈ Un, ub(1− γ, 0) = γy10.
4) For all γ ∈ Un,

ub(γ, 0) = ub(γ + δ, 0) + ub(1− γ, 0).

5) For all γ ∈ Un,

ub(1, γj) = ub(1, γ − δ) + ub(1, γ).

6) For all γ0, γ1 ∈ Un,

ub(γ0, γ1) = ub(γ0, 1− δ) + ub(1, γ1).

Theorem 3. For all ~p ∈ Un × Un, ub(~p) = ~p · ~g10.

The proof is similar to that of Theorem 1.

Definition 4. For all ~p ∈ Un × Un, define vb(~p) as follows.
1) vb(1, 1) = 0.
2) For all γ ∈ Un, vb(1, 1− γ) = γx11.
3) For all γ ∈ Un, vb(1− γ, 1) = γy11.
4) For all γ ∈ Un,

vb(γ, 1) = vb(γ + δ, 0) + vb(γ, 0).

5) For all γ ∈ Un,

vb(1, γ) = vb(1, γ + δ) + vb(1, 1− γ).

6) For all γ0, γ1 ∈ Un,

vb(γ0, γ1) = vb(γ0, 1− δ) + vb(1, γ1).

Theorem 4. For all ~p ∈ Un × Un, vb(~p) = ~p · ~g11.

The proof is similar to that of Theorem 1.



Array From To
uax ua(0, 0) ua(0, 1)
uay ua(0, 0) ua(1, 0)
vax va(0, 0) va(0, 1)
vay va(0, 1) va(1, 1)
ubx ub(1, 0) ub(1, 1)
uby ub(0, 0) ub(1, 0)
vbx vb(1, 0) vb(1, 1)
vby vb(0, 1) vb(1, 1)

TABLE III: Interpolated 2D gradient tables and their contents
using the values defined in Section III.

In Lines 3–4 of Table II the dot products are replaced by
additions as described in Definitions 1–4 and Theorems 1–
4, respectively. In each of Definitions 1–4, parts 1–5 are
precomputed in two 1-dimensional tables of d + 1 floating-
point entries, and part 6 is computed on demand.

B. Implementation of Amortized 2D Noise

The following C code generates an n×n grid of 2D Perlin
noise. We need some initialization done once per octave,
starting with a spline table.

float spline[n+1];
for(int i=0; i<=n; i++)
spline[i] = s_curve((float)i/n);

Notice that we can replace Perlin’s original cubic spline
function s(t) = 3t2 − 2t3 with a quintic spline function
6t5 − 15t4 + 10t3 as proposed in [5] without increasing the
runtime of amortized noise. The quintic spline function has
the advantage that its first and second derivative at 0 and 1
are zero.

We need 8 arrays to store the interpolated gradient tables,
2 for each edge of a square. Table III shows the arrays and
their contents.

float uax[n+1], uay[n+1];
float vax[n+1], vay[n+1];
float ubx[n+1], uby[n+1];
float vbx[n+1], vby[n+1];

Four of these tables need to be filled in from bottom to top, and
the others from top to bottom. This is done with the following
two helper functions.

void FillUp(float* t, float f){
t[0] = 0.0f; t[1] = f/n;
for(int i=2; i<=n; i++)

t[i] = t[i-1] + t[1];
} //FillUp

void FillDn(float* t, float f){
t[n] = 0.0f; t[n-1] = -f/n;
for(int i=n-2; i>=0; i--)

t[i] = t[i+1] + t[n-1];
} //FillDn

These are used to initialize the interpolated gradient tables as
follows.

FillUp(uax, x00); FillDn(vax, x01);
FillUp(ubx, x10); FillDn(vbx, x11);
FillUp(uay, y00); FillDn(uby, y10);
FillUp(vay, y01); FillDn(vby, y11);

Once initialization is complete, we can generate an n×n noise
grid with the following function.

void anoise2(float*** cell){
float u, v, a, b;
for(int i=0; i<=n; i++)
for(int j=0; j<=n; j++){

u = uax[j] + uay[i];
v = vax[j] + vay[i];
a = lerp(spline[j], u, v);
u = ubx[j] + uby[i];
v = vbx[j] + vby[i];
b = lerp(spline[j], u, v);
cell[i][j] =

lerp(spline[i], a, b);
} //for

} //anoise2

Notice that the only floating point multiplications used are for
the three linear interpolations.

C. Analysis of Amortized 2D Noise

The 2D Perlin noise algorithm uses 17 floating point multi-
plications per point per octave (see Table IV), and thus requires
17n2 floating point multiplications per octave to find noise
values for an n × n grid. The techniques described in the
previous section replace the cubic splines and dot products
in Table IV with table lookups and floating point additions.
We are left with a single floating point multiplication per
point for each of three linear interpolations. The number of
floating point multiplications required to generate noise on an
n × n grid is therefore 3n2 + O(n) per octave, a reduction
in the number of floating point multiplications by a factor of
17/3 ≈ 5.67 over 2D Perlin noise.

Since a good deal of the computation time used by Perlin
noise is taken up by floating point multiplications, we can
achieve a significant speedup factor in practice. Whether we
can come close to the theoretical factor of 5.7 depends on
the speed of floating point multiplications compared to other

Task Lines Number Mults Total
Cubic spline 1, 2 2 3 6
Linear interpolation 3–5 3 1 3
Dot product 3, 4 4 2 8
Total 17

TABLE IV: Number of floating point multiplications used by
2D Perlin noise per point per octave. The line numbers in the
second column refer to the algorithm in Table II.



Fig. 2: Running time for the Perlin and amortized noise
algorithms measured in seconds for computing 2D noise
values for grids of n × n points, where 512 ≤ n ≤ 8192
using single precision floating point arithmetic.

Fig. 3: Speedup factor for the amortized noise algorithm over
the Perlin noise algorithm for a grid of n × n points, where
512 ≤ n ≤ 8192.

operations. To test this, we measured the runtime of our
algorithm using both single and double precision floating
point arithmetic on an Intel R© CoreTM i7-3930K running at
4.2 GHz. We found that on this hardware amortized noise is
approximately 3–3.5 times faster than Perlin noise.

Fig. 2 shows the run-time in milliseconds for computing
2D Perlin and amortized noise on an n × n grid for 512 ≤
n ≤ 8192 in steps of 512 using single-precision floating point
arithmetic. Fig. 3 shows the ratio of Perlin noise runtime
divided by the amortized noise runtime for both single and
double precision arithmetic.

The overhead of initializing the new arrays becomes an
increasingly significant fraction of the overall runtime as n
decreases. Repeating our experiments for small n, we found
that amortized 2D noise is faster for all n > 1, but by a smaller
factor than for large n. For example, Fig. 4 shows the ratio of
the runtime of Perlin noise divided by that of amortized noise

Fig. 4: Speedup factor for the amortized noise algorithm over
Perlin noise for a grid of n× n points, where 8 ≤ n ≤ 128.

on an n× n grid for 8 ≤ n ≤ 128 in steps of 8.
We can see from Fig. 3 and Fig. 4 that amortized noise has

more of an advantage over Perlin noise when both algorithms
use double precision floating point arithmetic because double
precision multiplications cost more time than single precision
ones. We conjecture that as floating point multiplications
become more expensive, amortized 2D noise will achieve a
speedup factor approaching 5.

IV. 3D NOISE

The 3D Perlin noise algorithm computes a function P3 :
U3 → U±. To compute P3(x, y, z) it picks pseudorandom
gradients ~gijk = [xijk, yijk, zijk] at the 8 integer points
[i, j, k] (respectively), for i, j, k ∈ {0, 1}, and interpolates and
smooths between them. The amortized 2D noise algorithm
from Section IV generalizes to 3D in a fairly straightforward
manner (code is provided online in Parberry [4]). Instead of 8
interpolated gradient tables, there are 24.

The 3D Perlin noise algorithm uses 40 floating point multi-
plications per point per octave (see Table IV), and thus requires
40n3 floating point multiplications per octave to find noise
values for an n× n× n grid. The techniques described in the
previous section replace the cubic splines and dot products in
Table V with table lookups and floating point additions. We
are left with a single floating point multiplication per point for
each of 7 linear interpolations. The number of floating point
multiplications required to generate noise on an n× n grid is
therefore 7n2+O(n) per octave, a reduction in the number of
floating point multiplications by a factor of 40/7 ≈ 5.71 over
2D Perlin noise.

Fig. 5 shows the run-time in milliseconds for computing 3D
Perlin and amortized noise on an n×n×n grid for 32 ≤ n ≤
512 in steps of 32. Fig. 6 shows the ratio of the Perlin noise
runtime divided by the amortized noise runtime. We can see
that the overhead for initializing the large number of arrays
is beginning to become a more significant fraction of the run-
time. The results were much the same for both single and



Fig. 5: Running time for the 3D Perlin noise and amortized 3D
noise algorithms measured in seconds for computing 3D noise
values for grids of n× n× n points, where 32 ≤ n ≤ 512.

Fig. 6: Speedup factor for the amortized 3D noise algorithm
over Perlin noise for a grid of n× n× n points, where 32 ≤
n ≤ 512.

double precision floating point operations. One can conjecture
from this result that amortized noise will be of little or no use
for higher dimensional noise.

V. INFINITE NOISE

Perlin noise repeats with period nB, where B is the size of
Perlin’s permutation and gradient tables, and is usually equal
to 256. This defect in Perlin noise could be remedied on an m-
bit computer by computing the gradients at integer grid points

Task Number Mults Total
Cubic spline 3 3 9
Linear interpolation 7 1 7
Dot product 8 3 24
Total 40

TABLE V: Number of floating point multiplications used by
3D Perlin noise per point per octave.

using a minimal perfect hash function for m-bit integers, that
is, a hash function whose domain and range are exactly the set
of m-bit integers. (For more information about hash functions,
see, for example, Knuth [6].) However, this would slow down
the Perlin noise generator significantly.

Amortized noise takes less of a speed hit since the cost of
computing gradients at integer grid points is amortized over the
computation at the remaining points. Take, for example, amor-
tized 2D noise as described in Section III. Let h : N→ N be a
hash function. For all n ∈ N, define h : N2 → {0, 1, . . . , n−1}
to be h(x, y) = h(h(x) + y) mod n. Compute gradients
g(~p) ∈ N×N at integer points ~p ∈ N×N as follows. Choose
an angular granularity n ∈ N and let {û0, û1, . . . , ûn−1} be
the set of n uniformly spaced vectors around the unit circle.
We then define ~g([x, y]) = ûh(x,y). The resulting noise will
be, if not infinite, then as close as possible to being infinite
depending on the quality of the hash function. We have had
particular success with a quadratic hash function h(x) = px2

for small prime numbers p.

VI. CONCLUSION

While the Perlin noise algorithm provides random access
to a source of smooth noise, amortized noise saves compu-
tation by computing noise values in a nearby neighborhood.
Amortized noise is only useful as a sequential computation
running on a traditional von Neumann architecture CPU. The
running time of shader implementations of Perlin noise (such
as Green [7]) is dominated by the cost of texture addressing
rather than floating point multiplication, and hence will see
little or no benefit from amortization.

Interesting open problems include a full analysis of candi-
date hash functions for infinite amortized noise. The quadratic
hash function suggested in this paper does better than linear
congruential hash functions, but it does produce some visual
artifacts. A quadratic congruential hash function h(x) = x2

mod p for prime numbers p around 232 for 32-bit arithmetic
has fewer visual artifacts , but costs slightly more to compute.

REFERENCES

[1] K. Perlin, “An image synthesizer,” in Proceedings of the 12th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH).
ACM, 1985, pp. 287–296.

[2] D. Ebert, S. Worley, F. Musgrave, D. Peachey, and K. Perlin, Texturing
& Modeling, a Procedural Approach, 3rd ed. Elsevier, 2003.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and S. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[4] I. Parberry. (2013) Amortized Noise. [Online]. Available: http:
//larc.unt.edu/ian/research/amortizednoise/

[5] K. Perlin, “Improving noise,” in Proceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH).
ACM, 2002, pp. 681–682.

[6] D. E. Knuth, Sorting and Searching, 2nd ed., ser. The Art of Computer
Programming. Addison-Wesley, 1998, vol. 3.

[7] S. Green, “Implementing improved Perlin noise,” in GPU Gems 2. CRC
Press, 2005.


