

Real-time Rendering of Burning Solid Objects in Video Games

Dhanyu Amarasinghe and Ian Parberry

Technical Report LARC-2012-01

Laboratory for Recreational Computing
Department of Computer Science & Engineering

University of North Texas
Denton, Texas, USA

May, 2012

Real-time Rendering of Burning

Solid Objects in Video Games

Dhanyu Amarasinghe

Dept. of Computer Science & Engineering

University of North Texas

DhanyuAmarasinghe@unt.edu

Ian Parberry

Dept. of Computer Science & Engineering

University of North Texas

ian@unt.edu

Abstract

Objects in 3D games are typically shell models, a
polygon mesh representing the shell or skin of the
object. While emulation of the behaviour of shell
models under combustion is sufficient for many
game applications and is fairly well studied, solid
objects do in fact burn rather differently than shell
objects. We show how to manipulate shell models
so that they appear to burn as solid models. Since
our burning objects will be only a small part of a
video game, computation speed is of the essence.
We demonstrate that our method uses only a frac-
tion of the computational power available by imple-
menting the computation on a modest GPU using
CUDA.

Keywords Hardware acceleration, volume ren-
dering, freeform deformation, procedural genera-
tion, polygonal modeling, CUDA, refinement, sub-
division.

General Terms Video games, visualization, al-
gorithms, performance, design and modeling.

1. Introduction

Many cutting edge console and PC games compete
to attract seasoned players by increasing realism
over and above what they are accustomed to in
other games. Replicating the details of a physical
process such as fire can readily draw the player into
willing suspension of disbelief.

The typical object in a 3D video game is rep-
resented by a polygonal mesh in the shape of its
surface, which we will call a shell model. The prob-
lem of applying shape changes to a shell model
by emulating solid object properties without over-
loading the available computational resources is a

Figure 1: Shell model deformation (left) vs solid model
deformation (right).

challenging one. We propose to tackle the emula-
tion of solid object deformation and consumption
under combustion. Solid objects are expected to
burn much differently than shells. Aside from the
obvious difference of being able to see the inside of
a burned-out shell (Figure 1, left), a solid object
will melt and deform under heat in a different way
(Figure 1, right).

The structure of the remainder of this paper is as
follows. In Section 2 we describe some prior work.
In Section 3 we describe our representation frame-
work for the internal deformation and the key fea-
tures of such a strategy. Section 4 describes our
approach to implementing the structural deforma-
tion framework. Section 5 contains a few notes on
our optimization techniques and results. Section 6
contains the conclusion and further work.

2. Previous Work

This paper extends our previous work on the emu-
lation of burning objects in video games. Amaras-
inghe and Parberry [2] laid down the foundation of

1

Figure 2: The combustion of a solid model and the spread of procedural fire.

our approach and demonstrated the ability to real-
istically burn in real time on a relatively slow GPU
a high-polygon count shell model of a toy satellite.
Amarasinghe and Parberry [1] extended this work
to models with a very low polygon count by judi-
cious use of procedural triangulation in the areas
that are on fire, and demonstrated the ability to
realistically burn on the same GPU a 12-triangle
shell model of a door. This approach also lent itself
easily to dynamic Level of Detail rendering.

Model deformation is a popular topic in the
Computer Graphics community. We single out the
following papers as relevant and significant, but
without exception they strive for realism at the
cost of performance. Although they are more re-
alistic than our approach, their methods are not
real-time and are therefore more useful for offline
applications such as motion pictures than for video
games. Melek and Keyser [3, 4] discuss techniques
that were used in selected object deformation due
to fire. Demetri Terzopoulost and John Platt [11]
introduce the theory of elasticity to describe de-
formable materials such as rubber, cloth, paper,
and flexible metals. Sederberg and Parry [8] in-
troduce a technique for deforming solid geometric
models in a free-form manner. E. B. Tadmor and
Rob Phillips [10] and Nealen et al. [5] use finite
element methods to deform complex geometries.
Toivanen [9] discusses free deformation of meshes.

Finally, Nguyen Rasmussen and Fedkiwr [6, 7]
introduce high quality flame simulations that we
use in our experiments, but they do not address
object deformation.

3. Internal Deformation

According to Melek and Keyser [3], when an object
burns there are assorted interior chemical reactions

at various stages that lead its properties to change
in a process called pyrolysis. Volumetric expansion
of heated material is caused by weakening bonds
at the molecular level. Internal forces are disturbed
by the effect of heat on unstable bond structure,
ultimately leading to the consumption of material.
This causes changes in the shape of the object’s
affected areas. We begin by creating a simplified
model of heat spread.

3.1 The Heat Boundary

The temperature of a burning object changes over
both time and space. The increase in temperature
generated by fire changes the mechanical behavior
of the object. Significant thermal response occurs
due to the thermal conductivity of the material.
Absence of thermal equilibrium of the heat flux
generates a heat boundary. As in Amarasinghe and
Parberry [2], we approximate the expansion of the
heat boundary by calculating it around a fixed
solitary point using the following function:

R2 = | sin(πΘ/∆r) + sin(πΘ) +

ψ((x− x0)2 + (y − y0)2 + (z − z0)2)|,

where R = r + ∆r indicates that the radius r
is incremented by ∆r in each ∆t time period.
The angle Θ is a random value in order to make
the expanding heat boundary irregular in shape.
The location of the heat source is (x0, y0, z0). As
we discussed earlier in [2], the heat index can be
approximated by a constant that depends on the
size of the coarse triangles of the model.

In this paper we address the combustion of solid
models with an arbitrary number of polygons. If
the targeted triangle is considerably larger than
the rest of the triangles, we can always apply
the subdivision techniques from Amarasinghe and

2

Parberry [1]. Thus, the designer can maintain a
fixed heat index value that is suitable for the model
and maintain the subdivision level accordingly.

The above boundary function creates a roughly
spherical but irregular heat boundary around the
heat source. In the real world, heat sources re-
produce throughout the burning object as flames
distribute over time. Figure 3 illustrates the sim-
ilarity of the approximated heat boundary expan-
sion for single versus multiple heat sources. The
multiple source heat boundary expands through-
out the model with behavior similar to our single
heat source approximation implemented using the
above function. Because determination of the au-
thentic heat boundary expansion is computation-
ally expensive, we believe that the use of a single
source heat boundary expansion is a viable alter-
native for use in video games.

Figure 3: Heat boundary for single vs. multiple heat sources
with different levels of boundary.

As shown in Figure 3, we divide the heat bound-
ary into four different areas. The Virtual Heat
Boundary is spread through the model prior to
the actual heat boundary expansion and is used to
amortize essential calculations that could apply to
the qualified triangles before the deformation pro-
cess begins. The other three boundaries are those
introduced in Amarasinghe and Parberry [2]; the
Initial Heat Boundary in which combustion is ac-

tively taking place and vertices are preparing to be
deformed, the Combustion Ready Boundary where
ignition starts, and the Deform Boundary consist-
ing of material that has been burned.

3.2 The Deformation Process

Surface removal as practiced in our prior paper
Amarasinghe and Parberry [2] is less useful in
solid models than in shell models because the con-
sumption of material in a solid model simply re-
veals more material just underneath it. Conse-
quently solid models have more triangles to de-
form than shell models, and these need to be man-
aged efficiently and effectively. In order to achieve
this we categorize model triangles into three ma-
jor types as shown in Figure 4. Those are called
Boundary Qualified Triangles, Combustion Qual-
ified Triangles, and Deforming Triangles. Bound-
ary Qualified Triangles are the triangles located
inside the Virtual Heat Boundary. These can be
completely or partially contained within the heat
boundary, depending on the size of the triangle.
If the latter is the case, triangle subdivision must
take place.Combustion Qualified Triangles are the
ones that are ready to take part in the first round
of deformation.

Figure 4: categorized Model Triangles

3.3 Inward Contraction Displacement

In shell models the heat-induced deformation of
an object is achieved by displacement of the ver-
tices of the model mesh (see Amarasinghe and Par-

3

berry [2]), where the position of each vertex de-
pends on given properties such as vertex distance,
gravitational force, and material index, and the in-
ternal forces work on the triangle pointing towards
the direction of its vertices. However, when the
model represents a solid object we must also ap-
ply inward contraction forces to the vertices.

In burning objects, the extending heat waves
weaken the bond strength between adjacent mol-
ecules. This weakening effect falls off as a func-
tion of the distance from the heat source. As a re-
sult, surface molecules move towards the stronger
bonds in order to find stable equilibrium between
the acting forces. This results in contraction of the
burning area of the object. Melek and Keyser [3]
also noted that due to multiple internal chemical
reactions at various stages of the combustion pro-
cess, material may change state from solid to liq-
uid and from liquid to gas. Both these cause re-
duction of the mass in affected areas of the burn-
ing object. In most cases this will cause an inward
concave shape in the consumed area. To illustrate
this phenomenon in a simulation we have applied
what we call the Inward Contraction Displacement
Technique to calculate the inward movement of the
vertices of the Deforming Triangle. The idea of this
technique is to identify for each triangle a virtual
point covered by the affected polygonal boundary
in distance (see Figure 5) and use this to calculate
the the local inward displacement.

First we must identify the inward direction of
the Combustion Qualified Triangle or the Deform-
ing Triangle. Secondly, the distance of the virtual
point must be proportional to the size of the qual-
ified triangle. However, calculating random virtual
points to meet the necessary requirements on con-
tinuously deforming polygons is not an efficient so-
lution. Therefore, our best approach to succeed this
task is to employ the face normal of the object
and calculate the inverse directional coordinates.
To maintain the proportional distance between the
virtual point and the triangle surface, we factor the
normal vector coordinate by the length of either
side of the triangle (d1 or d2 in Figure 5). That is,

(Xin, Yin, Zin) = −D · (Xfn, Yfn, Zfn),

where (Xin, Yin, Zin) is the inward contraction
point and (Xfn, Yfn, Zfn) is the face normal of the

targeted polygon. The distance of the either side of
a polygon is represented by D. Deforming Trian-
gles are the triangles that actually performing the
deformation of the burning object. The displace-
ment of its vertices is addressed in the following
subsection.

3.4 Vertex displacement

Suppose B is a vertex to be displaced in triangle
ABC, where A = (xa, ya, za), B = (xb, yb, zb),
and C = (xc, yc, zc). B is to be displaced to
(Xd, Yd, Zd), as follows:

Xd = (x1x2(ya − yc) + x1xa(yc − y2)
+xcx2(y1 − ya) + xaxc(y2 − y1))/
((xa − x2)(yc − y1)− (xc − x1)(ya − y2))

Yd = (y1y2(xa − xc) + y1ya(xc − x2)
+ycy2(x1 − xa) + yayc(x2 − x1))/
((ya − y2)(xc − x1)− (yc − y1)(xa − x2))

Zd = (z1z2(ya − yc) + z1za(yc − y2)
+zcz2(y1 − ya) + zazc(y2 − y1))/
((za − z2)(yc − y1)− (zc − z1)(ya − y2))

where

(x1, y1, z1) = µC + (d1 − µ)B

(x2, y2, z2) = λA+ (d2 − λ)B.

Figure 5 illustrates the coordinates and param-
eters used in these equations. The values λ and µ
are the displacement amounts of each triangle due
to the effect of heat on the vertex. The lengths of
BC and BA are d1 and d2 respectively. The points
(x1, y1, z1) and (x2, y2, z2) are µ and λ fraction of
the length along the edges (respectively BC and
BA) of the triangle. The values µ and λ are dis-
placement parameters for vertex B. They measure
the amount that the bond between B and its neigh-
boring vertices is changed by temperature.

We use a displacement adjustment parameter β
to allow for the variation in triangle size from one
model to another. The designer must set this value
as part of the design process. ρ denotes a material
density index. When both vertices of an edge are
inside the heat boundary, bond strength is weaker
by a factor of φ than when one vertex is outside of
the heat boundary.

4

Figure 5: The deformation coordinates of a single triangle.

λ is then defined to be βρL/d2 if A is outside
the heat boundary, and φβρL/d2 otherwise (µ is
defined similarly, replacing d2 with d1), where L is
the flammability of the vertex, defined as follows.
Burning objects are consumed by combustion, and
combustion subsides when there is nothing left to
consume. We set a flammability value L at each
vertex. This counter decreases each time vertex
displacement is processed. After the flammability
index reaches zero, there are no consumable re-
sources left at the vertex. The designer sets the ini-
tial flammability index for each vertex. This gives
the designer the ability to vary flammability from
place to place in the model, thus mimicking the ef-
fect of having the model constructed from different
physical materials such as wood or metal. The final
displacement value of X,Y, Z can be calculated as
follows:

X = λb cos(Θ) sin(α)

Y = λb sin(Θ)

Z = λb cos(Θ) cos(α)

where

α = tan−1 (Xd −Xin/Zd − Zin)

Θ = tan−1 (Ydcosα/Zd − Zin)

λb is either value of λ or µ depending on the
corresponding distance that taken for D as d1 or
d2.

Among all of the external forces, gravity plays
a significant part in almost every physical sim-
ulation. Let ε be a constant that represents the
amount that the model melts due to heat, and ~g
be the gravity vector. Then the effect of gravity is
computed as follows: Y = Y − ε~g.

4. Structural Deformation

As we described in Amarasinghe Parberry [2], the
structural changes in a burning object are the re-
sult of various factors including the expansion and
the weakening of the internal bonds, and the rel-
ative weights of cantilevered parts of the object.
The precise calculation of these complex processes
is costly. Therefore, we introduced the block sam-
pling method as a computationally less expensive
solution to maintaining realism while performing
systematic structural change. The block sampling
method divides the object into uniform blocks and

5

treats each block as a single unit, propagating
changes to neighboring blocks. The following de-
scribes the modifications needed to adapt it to solid
objects.

This method starts by constructing an axially
aligned bounding box around the solid object, and
then decomposing it into a grid of smaller axially
aligned bounding boxes which we shall call blocks.
Define the weight of a block to be the number of
vertices inside it. We will use the block weight as
an approximation of flammability, under the as-
sumption that a block with more vertices contains
more material, and thus will produce more flames.
The difference with burning solids is that there
are no surface removal techniques associated with
burn level adjustments as in Amarasinghe and Par-
berry [2]. Furthermore, the weight changes of each
block are not significant enough without the effect
of level adjustment. As a solution for these con-
cerns, we maintain a counter to monitor the time
of combustion per each block. Weights of the blocks
are decided according to the number of vertices fac-
tored with the counter. The empty ones of weight
zero are discarded.

The parameters of each block contain the amount
of the midpoint rotation, the number of vertices,
the list of connected neighboring blocks, and the
counter. Since all the blocks are interconnected, a
change to one block may affect all of the blocks
in the model. To maintain the computation com-
plexity in low level, we apply changes to only im-
mediate neighboring blocks, and rely on subse-
quent iterations to propagate the effects further.
The change of the weight in each block results in a
slight rotation of the box around its midpoint. The
direction of the rotation will be determined by the
placement of the displaced vertex compared to the
midpoint of the box. Stability will change due to
the rotation of the immediate neighboring boxes.

We keep track of the orientation of each block
as a triple of Euler angles. The change in roll
angle R (pitch and yaw are similar) for a block is:
R = γρπ/NM , where γ is a scaling factor chosen
by the designer, ρ is a measure of the material
density of the model in that block, N is the number
of vertices in the block, and M is the current
number of nonempty neighboring blocks.

5. Results and Optimization

We have implemented automatic level of detail
(abbreviated LOD) rendering into our simulation
using techniques presented earlier in Amarasinghe
and Parberry [1]. Figure 6 illustrates our LOD
algorithm applied to the burning of a solid block of
wood. The images shown in this paper are from a
CUDA implementation of our algorithm applied to
different models. Since there is no strict time line
for the combustion of the model, we can always
control complexity of the simulation by limiting
the number of deforming triangles at a time.

Optimization is possible since our deformation
is always applied mostly to the affected areas of
the object. The continuous deformation of given
polygon can be controlled by parameter settings
such as the flammability value L. In particular,
the shape and size of a Deforming Triangle can be
drastically changed. Overly-exaggerated deforma-
tion reduces realism. In order to maintain efficient
simulation without heavy resource usage, once a
Deforming Triangle’s flammability value L exceeds
some limit we remove the polygon from the group
of Deforming Triangles and add more from the set
of Combustion Qualified Triangles into the group.
By following this practice we gained more control
over the simulation with better performance while
maintaining realism.

We used approximately 2000 fire particles and
500 smoke particles to demonstrate the visual ef-
fects. Our algorithm was implemented in CUDA
on relatively modest hardware; An Intel R©CoreTM2
Duo CPU P8400 @ 2.26GHz processor with an
NVidia GeForce 9800 GTS graphics card. We were
able to maintain 60fps frame rate up to 45k triangle
model with balanced settings (quality vs. perfor-
mance) in the graphic card. This performance will
of course be much better on the current generation
of graphics hardware, and thus able to run in par-
allel with other rendering tasks and game-related
computation.

6. Conclusion

We have described a method for the real-time de-
formation and consumption of a solid model during
combustion by procedurally generated fire, extend-
ing our previous work on shell models [1, 2]. We
were able to successfully perform our simulation

6

Figure 6: Level of Detail (LOD)

on models of various mesh resolution and topol-
ogy on less than cutting-edge hardware. We believe
that our approach maintains a reasonable amount
of realism sufficient to trigger willing suspension of
disbelief in the game player. Our simulations per-
form well on various models ranging from a dozen
to hundreds of thousands of triangles.

Open problems remaining include the efficient
and effective modeling of melting objects such as
candles.

References

[1] D. Amarasinghe and I. Parberry. Fast, believable
real-time rendering of burning low-polygon objects
in video games. In Proc. 6th Internat. North Amer-
ican Conf. on Intelligent Games and Simulation
(GAMEON-NA), pages 21–26. EUROSIS, 2011.

[2] D. Amarasinghe and I. Parberry. Towards fast,
believable real-time rendering of burning objects in
video games. In Proc. 6th Annual Internat. Conf.
on the Foundations of Digital Games, pages 256–
258, 2011.

[3] Z. Melek and J. Keyser. An interactive simulation
framework for burning objects. Technical Report
2005-03-1, Dept. of Computer Science, Texas A&M
University, 2005.

[4] Z. Melek and J. Keyser. Driving object deforma-
tions from internal physical processes. In Proc.
2007 ACM Symp. on Solid and Physical Model-
ing, pages 51–59, New York, NY, USA, 2007. ACM
Press.

[5] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and
M. Carlson. Physically based deformable models in
computer graphics. Computer Graphics Forum, 25
(4):809–836, 2006.

[6] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. Phys-
ically based modeling and animation of fire. In
Proc. 29th Annual Conf. on Computer Graphics
and Interactive Techniques, pages 721–728, New
York, NY, USA, 2002. ACM Press.

[7] N. Rasmussen, D. Nguyen, W. Geiger, and R. Fed-
kiw. Smoke simulation for large scale phenom-
ena. ACM Transactions on Graphics, 22(3):703–
707, 2003.

[8] T. Sederberg and S. Parry. Free-form deformation
of solid geometric models. ACM SIGGRAPH Com-
puter Graphics Quarterly, 20(4):151–160, 1986.

[9] J. Simo and F. Armero. Geometrically non-linear
enhanced strain mixed methods and the method
of incompatible modes. Internat. J. for Numerical
Methods in Engineering, 33(7):1413–1449, 1992.

[10] E. Tadmor, R. Phillips, and M. Ortiz. Mixed
atomistic and continuum models of deformation in
solids. Langmuir, 12(19):4529–4534, 1996.

[11] D. Terzopoulos, J. Platt, A. Barr, and K. Fleis-
cher. Elastically deformable models. ACM SIG-
GRAPH Computer Graphics Quarterly, 21(4):205–
214, 1987.

7

