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Abstract

We describe an algorithm for placing room contents including furniture and general clutter
in a virtual environment according to design constraints specified in the form of a Petri net. We
have implemented a prototype system and present images generated by it. The outputs of our
prototype are believable, varied, random, yet controllable and structured room layouts suitable
for video games.
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1 Introduction

Game content, including 3D models, bitmapped graphics, levels, textures, maps, and audio, is
important to a variety of game genres (Forbus [5]). The demand for content is increasing to the
point that its creation has become the most time-consuming and costly part of game development.
Traditionally game content has been largely hand crafted by artists and designers. By having the
computer take over some of the process of content generation, the time and money required can be
reduced without compromising either the amount or quality of the results. This is called procedural
content generation (see, for example, Roden and Parberry [20] and Nelson and Mateas [15]). In
addition to taking some of the fiscal and temporal burden from game developers, procedural content
generation can also open up new methods of increasing a game’s replayability by incorporating the
generators into the game itself. Prior work has shown the feasibility of procedural methods (see, for
example, [6, 16, 23]) and there has been much interest in the procedural generation of a number of
different types of game content, including clouds and stars [21], terrain [4], plants [3, 25], forests [2],
cityscapes [10, 11], animation [17], levels [1, 22], and textures [14].

Procedural generation of room contents has not been well studied. We will use the term clutter
to refer to any non-architectural elements of a room including furniture and other miscellaneous
objects. Howard and Broughton [7] offer an offline method where the major furniture pieces are
added by hand, and smaller pieces of clutter are added by a genetic algorithm. This is not par-
ticularly fast, and since the major furniture pieces are not part of the process, it is mainly a tool
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for the level designer. Tutenel et al. [24] offer a more complete solution that involves defining a set
of tagged bounding boxes for each object and then using a constraint solver to place the objects.
This approach is attractive since the bounding boxes are intuitive and visual enough for use by a
professional designer, and the method appears fast enough to be used in game.

There are a number of desirable properties in any procedural content system. The most impor-
tant of these are nowvelty, structure, interest, speed, and controllability:

e Novelty: The generated content should be recognizably different each time. Differences that
are not noticed by the player are not novel.

e Structure: The content should not be merely random. It should have some structure recog-
nizable to the player.

o Interest: The content should achieve a balance of structure and novelty that engages the
players.

e Speed: The generator needs to run quickly enough. This includes both the time to generate
one instance as well as the number of instances needed to find an interesting one.

e Controllability: The generator needs to be controlable enough that a designer can use it to
make interesting content.

Nowelty in generated room clutter means that rooms generated from the same constraint set
should be sufficiently different from each other to be distinguishable.

While a procedural clutter generator should create unique outputs, which means using enough
randomness to avoid duplicating identifiable features, at the same time this randomness should not
lead to a loss of structure. Structure means that the room content makes sense and are internally
consistent, as opposed to looking as if a random set of objects were thrown into a room.

Interesting content is subjective, but partially comes from a balance of novelty and structure.
That is to say, novelty and structure are necessary but not sufficient conditions for a room to be
interesting. Designers spend numerous hours learning what makes a room interesting, so rather
than try to replicate that, this system aims to enable designers to use that knowledge.

The idea of the speed of a content generation system is somewhat like the definition of real-time,
which is “fast enough that the results are ready when needed.” One could imagine the contents of
a room being generated while the door is opening to admit the player, say within a small number
of animation frames.

Finally, any content generation system needs to be controllable. The system needs to allow the
designers to express their ideas. Besides being flexible enough for those ideas to be possible, it also
needs to be usable enough that the designer can actually implement them. Petri nets can be, and
in this case are, Turing complete and can be used to enforce any arbitrary conditions the designer
wants. Additionally, Petri nets can be built with a drag-and-drop interface that is often easier on
Nnon-programiers.

We present a procedural clutter generator based on Petri nets that we have designed to satisfy
these five constraints. The remainder of this paper is divided into five sections. In the first
section we introduce the concept of an anchor, and describe how anchors can be used to guide
the placement of objects. The second section describes our Petri net language for describing room
clutter constraints. The third section describes our implementation of this system, and the fourth
section presents some resulting images of room clutter generated by it. The fifth and final section
is a Conclusion that includes further work.



2 Anchors, Objects, and Collisions

A cluttered room is, except in extreme and perhaps pathological cases, not a completely random
collection of objects. There are almost always patterns that emerge. In particular there tends to be
a spatial organization with certain objects or sets of objects appearing in specific areas of a room.
These objects tend to appear in either the corners, spaced regularly (but not perfectly) along the
edges, in a rough grid in the center of the room, or in a specific relation to other objects.

We capture this intuition with the concept of an anchor point, which marks a place at which
an object can be (approximately) located. An anchor point is represented as a position and orien-
tation. Throughout the rest of this paper, although our examples will be in 2D for simplicity, the
descriptions will explain where 2D and 3D would differ. In 2D the anchors would be in the corners,
spaced along the edges, and spread out in a grid over the center of the room. The spacing along
the edges and the size of the grid depend on what type of room is being generated, for example,
the desks in a classroom and the tables in a dining room would be placed using different spacings.
Additionally, in 3D there can be anchors on the wall and ceiling.

Since just one level of objects is not enough to clutter up a room, each object also has a set of
anchor points for further clutter. For example, a table may have anchor points for the chairs to be
placed around it, as well as points on top for the place settings, center piece, and other clutter.

To avoid having all the objects sit in perfect alignment with each other, which almost never
happens in the real world but can often be seen in virtual worlds, objects being placed have a
Gaussian displacement in both position and orientation about the normal of the surface the object
is on, specified by the standard deviations. Objects in the corner would normally have a standard
deviation in both position and orientation of 0, while a pile of paper in the center of the table might
have a standard deviation of position of a foot or so and any orientation. This is specified as late
as possible so that it can be changed for a piece of paper on a book versus a piece of paper in the
middle of a table.

In addition to individual objects, each object can be classified into one or more categories. The
system can then choose one of a list of objects to represent each category needed by the current
room. This would give the room a more cohesive feel. If having just one object per category is too
restrictive, it is possible to have it pick multiple objects based on some measure of how well they
go together or to mark certain categories as open, allowing it to pick anything from that category.

If the objects are placed randomly, it is very likely that some of them will end up colliding. In
3D, collision detection would be done in the normal way, but in 2D some work has to be done to
allow a chair to be under a table, or a plate to be on it. One refinement, taken from [24], is to
change the bounding volume of objects to include space the object needs to function, such as the
room in front of a drawer, or behind a chair.

When an object collides with something that has already been placed in the room, it needs
to be moved. The simplest way to do this is to generate new displacements for the position and
orientation and try again. There has to be a limit to how many times this can be tried, as the object
might not be able to be placed at all. In most cases, it is safe to throw the object away as many
can appear in multiple places. Two cases in specific make this approach somewhat lacking though.
First, things like chairs around a table look odd when one is missing. Second, some items may be
considered important and could fail to generate. In both cases, there are partial workarounds that
can lessen the chances of this happening and both cases can be detected by a post-processing step
as uninteresting.



3 Petri Nets

Petri nets date from 1939 and were originally used to describe chemical processes [18], but they
have found a large number of applications since then, including distributed computing [19] and
manufacturing [13].

A Petri net (Petri [18]) consists of a directed bipartite graph and a set of tokens. The nodes
in one partition of the graph are called places and the nodes in the other partition are called
transitions. Tokens can be put on the places, and the transitions describe how the tokens can move
around the graph. A transition is called live if each of the places pointing to it contain at least one
token. Each step, one live transition is chosen to fire, which removes one token from every place
pointing to it, and adds one to each place it points to.

In standard Petri nets, tokens are completely indistinguishable from each other. The only
information they carry is where they are and how many of them are there. In a colored Petri net
(see, for example, Jensen [9]), the tokens carry additional information. We will use tokens to carry
the information needed to place objects in a room. Although it seems natural for the tokens to
represent objects, we will perhaps counterintuitively use the tokens in the Petri net to represent
anchor points. In addition, some generic tokens with no anchor point will be added manually to
aid in bookkeeping.

The transitions in our colored Petri nets differ slightly from normal Petri net transitions in three
significant ways. Firstly, since the tokens are carrying important information, the relation between
incoming edges and outgoing edges must be made explicit. For each incoming edge, the user must
specify which outgoing edge will get the token or that the token is to be discarded. Similarly, for
each outgoing edge, there is the possibility of making a new generic token, or taking whatever is
coming from one of the incoming edges. This is a simplified version of the standard approach to
colored Petri nets, but it makes more sense in this context.

Secondly, for each incoming edge the user can specify which types of tokens to allow on that
edge. This is handled by attaching a nonunique name to each anchor point and then checking those
names when deciding if the transition is ready to fire. This allows objects to be placed in corners,
but not along edges, while all of the tokens were together in one place. This is also a simplification
of the guard expressions used in standard colored Petri nets.

Thirdly and finally, each incoming edge can create an object at the anchor point represented
by the token it is working with. Since that anchor point would then be occupied, it is no longer
valid to keep a token for it. Instead, all of the anchor points on the object being created become
new tokens and are passed along to the appropriate outgoing edge.

While running, one live transition is picked randomly to fire. To control how often things
happen more precisely, a probability is attached to each transition. This probability is how likely
it is to actually fire when picked and defaults to 1 (which means it will fire if picked). This allows
the user to make very low probability events without making hundreds of duplicated transitions
for everything else, or doing some other gymnastics with the shape of the net.

One way of simplifying certain common tasks is with prioritized Petri nets, in which a priority
is attached to each transition. This would allow the user to say that this object must be placed
as soon as possible without worrying about other objects taking up the available anchors. It is
possible to do this without priorities, using extra places and transitions, but in many case, it would
be a significant complication to do so.

Another important addition is the inclusion of inhibitor edges. These are edges from a place
to a transition, but they do not move tokens. Instead, if the place holds an appropriate token, the
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Figure 1: Legend for Petri nets. Edges are often called arcs in other literature on Petri nets and
graphs.

inhibitor edge prevents the transition from firing. Petri nets with inhibitor edges are well known
to be Turing complete, that is, they compute exactly the set of computable functions.

To enable the designer to organize and modularize the design, the Petri net is broken into pages.
This is often called a hierarchical Petri net (see, for example, Huber, Jensen, and Shapiro [8]). The
version used here allows the pages to be easily unrolled into one large page at run time for ease of
execution.

To provide the widest range of possibilities, each place and transition is assigned a scope. In
the simplest case, this would be either local or global, but other scopes such as room or page are
useful options. Nearly all places and transitions are local, but having a global scope allows the user
to, for example, enforce the uniqueness of an item even if it could be created in multiple pages.

Figure 1 shows the different parts of a Petri net. Circles are places and rectangles are transi-
tions. Dots within circles are generic tokens. Labels on edges from places to transitions represent
restrictions on the types of tokens that can move along that edge. Labels on the dotted linkages
from places to page calls designate which place in the other page to link with. The labels on the
parts of the edges within the transitions show which object, if any, to create when that transition
fires. Figure 2 shows a small example of a Petri nets for a table.

The anchor tokens for a room are initially put in the START place. In this case, only the
CENTER anchors can move on, leaving the EDGE and CORNER tokens in START. The first
transition also requires a token from the TableControl place. Since there is only one such token,
only one table can be created.

In the process of firing, the CENTER token is used to place a table. After the table is created,
all of the anchor points that were part of it will be made into tokens and placed in the TableStuff
place. From there, the ChairSpot anchors are used to place chairs around the tables.

4 Implementation

We implemented a prototype of this system in 2D in Java. The room and the initial anchor points
are prepared by hand, but the system is designed to be usable along side a room generator (for
example, [12]).
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Figure 2: A small petri net for a table and chairs.

The list of objects and the Petri net are stored in two XML files. Table 1 summarizes the tags
for the Petri net itself and Table 2 summarizes the tags for the list of objects. Table 3 gives sample
XML for the first page of the Petri net and for one of the table objects.

The Petri net is broken into pages that contain places along with any extra tokens, transitions
with details on what types are allowed and what objects to create, and calls to other pages and
the links for those calls. The deviation in orientation and position are only specified inside the
transitions so that a cup fallen on the ground can scatter further than one still sitting on the table
or a rug sitting on the floor.

The object XML is simply a list of objects where each object tag provides such details as the
image or images, its origin, its bounding volume (only bounding boxes are used here), a tag or list
of tags for use with the category system and a list of anchor points. If multiple images are provided,
they are used together as an animation.

The system reads everything in, then uses that to unroll everything into a single page stored in
an easily executable format. Since the pages need to be unrolled, cycles in the page call graph are
forbidden. Links, subtype of place, are introduced to make sure that unrolling works out nicely.
Links are treated like any other place except that they can only be locally scoped and they cannot
have generic tokens to begin with. All page calls connect places in the current page to links in the
called page, which are merged when that page call is unrolled.

Finally, the anchors from the room are fed into the starting place and the net is executed.
Execution consists of making a list of live transitions and firing one randomly. If specified by the
user, some transitions may have a chance of not firing even after being picked. This continues until



XML root <net>...</net>
Pages <net>
<page name="START">...</page>
</net>
Places <page ...>
tokens: how many generic tokens are here. | <place name="Somewhere" scope="Global" tokens="2" />
Defaults to 0. </page>
Links <page ...>
<link name="SomeLink" />
</page>
Transitions <page ...>
p: probability that this will fire when picked. | <trans name="DoSomething" scope="global"
Defaults to 1. p="0.7">...</trans>
</page>
Edges/Arcs <trans ...>
in/out: names of places to connect to. De- | <edge in="From" out="To" type="CENTER" object="Table"
faults to nothing. sdp="3" sda="5" />
type: name of a type of anchor. Defaults to | </trans>
any type.
object: name of a category of objects. De-
faults to no object. sdp/sda: standard devi-
ation of the position and angle of the object
created by this edge. Defaults to 0.
Page Calls <page ...>
target: name of a page. <call target="SomePage">...</call>
</page>
Call Associations <call ...>
link: name of a link in the target page. <assoc link="SomeLink" place="Somewhere" />
place: name of a place in the calling page. </call>

Table 1: XML Tags and attributes for the Petri nets

there are no live transitions, either due to using up the available tokens or having the tokens end
up in a place where they cannot be used.

5 Results

We constructed a Petri net for a sample room design and used it to generate some clutter for
differently shaped rooms. Figure 3 shows the first page of the Petri net used to generate the full
room pictures below. Figures 4 and 5 show some room layouts generated over multiple runs of the
same Petri net for two different room shapes. Figures 6 show some room layouts using a slightly
different Petri net from Figures 4 and 5 allowing multiple tables but no TV area. The anchor points
for each room are shown in Figure 7.

Judging our approach by the criteria mentioned in the Introduction as being desirable traits for
procedural content generation, we claim that our content is novel, in that the room contents are
unpredictable, yet there is structure in the way the contents are laid out, which makes the room
look like it has been used by people instead of laid out by computer or just randomly jumbled
together, thus creating interest. As evidence we provide the pictures in Figure 4. Our approach is
comparable in speed to that of Tutenel et al. [24]. The biggest issue remaining is controllability,
which we will address in the next section.
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Figure 3: First page of a Petri net for a sample room.



Figure 4: Some clutter generated by our system for an L-shaped room.



Figure 5: Some clutter generated by our system for a rectangular room using same Petri net as
Figure 4.
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Figure 6: Some clutter generated by our system using slightly different Petri net from Figures 4
and 5 allowing multiple tables but no TV area.
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Figure 7: A visual representation of the anchor points in the rooms. Circles in the center of the
rooms are center anchors, semicircles along the edges are wall anchors, and quarter-circles at the
corners are corner anchors.
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XML root

<objectSet>...</objectSet>

Objects <objectSet>
<object name="Tablel">...</object>
</objectSet>

Animation Frames <object ...>

x/y: the origin of this frame. Default to 0.

<frame filename="Tablel.png" x="32" y="24" />
</object>

Anchors
z/y/a: the location and orientation of the an-
chor relative to the object’s origin. Defaults

<object ...>
<anchor name="ChairAnchor" x="16" y="-16" a="90"
depth="100" />

to 0. </object>
depth: (2D only) shows which objects to draw

in front or in back.

Bounding Box <object ...>

z/y: the location of the corner of the bound-
ing box relative to the object’s origin. De-
faults to 0.

w/h: the width and height of the bounding
box.

<bounds x="-16" y="-12" w="32" h="24" />
</object>

Tags

<object ...>
<tag name="Table" />
</object>

Table 2: XML Tags and attributes for the object sets

6 Conclusions and Future Work

This paper introduces two new concepts for the design of a procedural clutter generator, anchor
points and Petri nets. The use of anchor points seems to allow for a natural placement of objects
not restricted to certain positions or angles. The modified Petri net presented above offers a useful

intermediate code for placing objects at the anchor points.

As mentioned in the previous section, the biggest issue remaining is controllability. One could
argue that a Petri net is not convenient for a designer even if a drag-and-drop interface is provided.
We believe that designers could easily be trained to use it however, and in any case the Petri
net could serve as a form of intermediate code for some yet-to-be-designed used interface. The

construction of such an interface and a usability study remain as further work.
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<net>
<page name="START">
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<place name="TVControl" tokens="1" scope="Global" />
<place name="TVFinished" scope="Global" />
<place name="TableControl" tokens="1" />
<place name="TableStuff" />
<place name="TVTemp" />

<trans name="SortEdge">

<edge in="START" out="EdgePlace" type="EDGE" />
</trans>
<trans name="SortCorner">

<edge in="START" out="CornerPlace" type="CORNER" />
</trans>
<trans name="SortCenter">

<edge in="START" out="CenterPlace" type="CENTER" />
</trans>
<trans name="BuildTable">

<edge in="TableControl" />

<edge in="TVFinished" out="TVFinished" />

<edge in="CenterPlace" out="TableStuff" object="Table" sdp="5" sda="5" />
</trans>
<trans name="MakeTVPlace">

<edge in="TVControl" out="TVFinished" />

<edge in="EdgePlace" out="TVTemp" />
</trans>

<call target="CornerClutter">

<assoc link="INPUT" place="CornerPlace" />
</call>
<call target="TableClutter">

<assoc link="INPUT" place="TableStuff" />
</call>
<call target="TVPage">

<assoc link="INPUT" place="TVTemp" />
</call>

</page>

</net>

<objectSet>
<object name="Tablel" depth="-100">
<frame filename="..\Tiles\Objects2\Tablel.png" x="48" y="32" />
<bounds x="-47" y="-31" w="94" h="62" />

<anchor name="Chair" x="-48" y="0" a="0" /> <anchor name="Chair" x="Q" y="-32" a="90" />
<anchor name="Chair" x="0" y="32" a="270" /> <anchor name="Chair" x="48" y="0" a="180" />
<anchor name="Top" x="-32" y="0" a="180" /> <anchor name="Top" x="0" y="-16" a="270" />
<anchor name="TopCenter" x="0" y="0" a="0" />

<anchor name="Top" x="0" y="16" a="90" /> <anchor name="Top" x="32" y="0" a="0" />

<tag name="Table" />
</object>

</objectSet>
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