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Abstract. Clutter is the random yet structured placement of objects in a room. 

We describe a procedural clutter generator that achieves believable, varied, and 

controllable object placement using a hierarchical colored Petri net capable of 

expressing any computable set of object placement constraints. 

1 Introduction 

The demand for game content has increased to the point that its creation by artists 

and designers has become one of the more time-consuming and costly parts of game 

development. Procedural content generation is the term used for computer generation 

of game content (see, for example, Roden and Parberry [1] and Nelson and Mateas 

[2]). In addition to taking some of the fiscal and temporal burden from game 

developers, real-time procedural content generation can increase a game’s 

replayability by the incorporation of the generators into the game itself. 

We use the term clutter to refer to non-architectural room. There has been little 

previous work on clutter generation. Howard and Broughton [3] offer a method in 

which the major pieces of furniture are added by hand and the miscellaneous objects 

are added by a genetic algorithm. Tutenel et al. [4] offer a more complete solution 

using a constraint solver that requires a set of tagged bounding boxes for each object.  

Doran and Parberry [5] list a set of five criteria important to any procedural content 

generation system: novelty, structure, interest, speed and controllability. We present 

in the paper a procedural clutter generator that we have designed to maximize 

controllability but not at the cost of the other four criteria. We argue that our 

generator produces interesting room clutter, and demonstrate this with an 

implementation of the generator available online for the reader to test for themselves 

[6] using any standard web browser. We also argue that our generator is flexible 

enough that a designer can control the output to produce appropriate clutter for 

different types of rooms. 
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2 Anchors, Objects & Collisions 

A cluttered room does not usually contain a completely random jumble of objects. 

There are almost always patterns in the way that things are laid out, for example, 

certain objects or sets of objects tend to be grouped in specific areas of a room. 

Objects usually appear in either the corners, spaced regularly but not perfectly along 

the edges, in a rough grid in the center of the room, or in a specific but logical relation 

to other objects in the room. 

We capture this intuition with the concept of an anchor point, which marks a place 

at which an object can be (approximately) located. Throughout the rest of this paper 

our examples will be in 2D for ease of discussion, but the principles are the same in 

3D. In 2D the anchors, as mentioned above, would be placed in the corners, spaced 

along the edges, and spread out in a grid in the center of the room. The spacing along 

the edges and the size of the grid depend on the room type. The placement of these 

initial anchor points may be done procedurally or by the designer. 

Each object placed by our clutter generator also has a set of anchor points for 

further objects. For example, a table may have anchor points for the chairs around it 

and points on top for the place settings, center piece, and other clutter. To avoid 

having all the objects sit in perfect alignment with each other, objects being placed 

have a Gaussian displacement in both position and orientation about the normal of the 

surface the object is on, specified by the standard deviations. 

It is very likely that randomly-placed objects will end up colliding. If an object 

collides with another, we simply generate new random displacements for its position 

and orientation, repeating if necessary up to some small number of attempts. If this 

fails, it is often safe to throw the object away. However, some items that are important 

for gameplay could fail to generate. In this case, we suggest that another random 

room layout be generated, again up to some small number of attempts. If that fails, it 

is likely that the constraints should be redesigned. 

3 Petri Nets 

Petri nets date from 1939 [7] and have since been applied to a wide range of 

applications (distributed computing, for example [8]). There are many great resources 

on the basics of Petri nets, so we will avoid repeating that information here. The Petri 

nets we use are a variation on colored, hierarchical Petri nets with inhibitor edges. 

The inclusion of inhibitor edges is needed to make the Petri net Turing-complete (see 

Peterson [9]). 

Tokens in standard Petri nets are indistinguishable. Conversely, in colored Petri 

nets the tokens carry extra information. We use this to store the information needed to 

place objects in the room. While it may seem natural for tokens to represent objects, 

this approach quickly runs into problems. Instead, each token will carry either zero or 

one anchor points. Generic tokens, with no anchor point, can be added manually to 

the initial net or be created at run time. Tokens with anchor points can only be created 



at run time. Colored Petri nets also add extra semantics to the transitions to handle 

this extra information. In our implementation, this leads to three significant 

differences over standard Petri nets.  

First, the relation between the incoming and outgoing edges of transitions must be 

made explicit. For each incoming edge, the user must specify which outgoing edge 

will get the token or that the token is to be discarded. Similarly, for each outgoing 

edge, there is the possibility of making a new generic token, or taking whatever is 

coming from one of the incoming edges. Second, for each incoming edge the user can 

specify which types of tokens to allow on that edge. This is handled by attaching a 

non-unique name to each anchor point and then checking those names when deciding 

if the transition is ready to fire. Third and finally, each incoming edge can create an 

object at the anchor point represented by the token it is working with. That token is 

then replaced by a set of new tokens representing the anchor points on the new object. 

While running, one live transition is picked randomly to fire. To control how often 

things happen more precisely, a probability is attached to each transition representing 

how likely it is to fire if picked. This defaults to 1 which means it will fire if picked. 

The pages of hierarchical Petri nets make running the net somewhat difficult. To 

avoid that, we instead unroll the net into a single page. To provide the widest range of 

possibilities, each place and transition is assigned a scope. A local scope means that 

places and transitions with the same name on different pages are considered different, 

while a global scope would mean they are the same and should be combined when the 

net is unrolled. To make sure that the unrolling works we also introduce links, a 

subtype of places. Links are treated like any other place but they cannot have generic 

tokens and can only be locally scoped. All page calls connect places in the current 

page to links in the called page, which are merged when that page call is unrolled. 

4 Implementation 

We implemented a prototype of our system in 2D in Java. The room and the initial 

anchor points were prepared by hand, but the system is designed to be used alongside 

a room generator. Figure 1 shows some of the generated rooms. (The reader is invited 

to visit Taylor and Parberry [6] for higher resolution images or to try the generator for 

themselves.) 

The list of objects and the Petri net are stored in XML files. The system takes these 

inputs plus the room with the initial anchor points. It then unrolls the Petri net, creates 

a token for each anchor point, and feeds those into the starting place in the net. 

Execution consists of making a list of live transitions and firing one randomly. This 

continues until there are no live transitions. 

Judging our approach by the criteria mentioned in the Introduction, we claim that 

our content is novel in that the room contents are unpredictable, yet there is structure 

in the way the contents are laid out. As evidence, we provide the pictures in Figure 1. 

Our approach is comparable in speed to that of Tutenel et al. [4], and the Turing-

completeness of Petri nets offers better controllability. The approach used by Howard 



and Broughton [3] is designed for a specific subset of clutter generation and so suffers 

in both categories.  

5 Conclusions & Further Work 

This paper introduces a procedural clutter generator based on hierarchical, colored 

Petri nets that can express any arbitrary computable set of constraints between 

objects. It remains to construct a graphical user interface for the designer. 
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Fig 1 – Ten rooms generated with our system using the same Petri net and object set. 




