
Randomness + Structure = Clutter: A Procedural Object

Placement Generator

Joshua Taylor and Ian Parberry

Department of Computer Science & Engineering, University of North Texas, Denton, TX

76207, USA

JoshuaTaylor@my.unt.edu, ian@unt.edu

Abstract. Clutter is the random yet structured placement of objects in a room.

We describe a procedural clutter generator that achieves believable, varied, and

controllable object placement using a hierarchical colored Petri net capable of

expressing any computable set of object placement constraints.

1 Introduction

The demand for game content has increased to the point that its creation by artists

and designers has become one of the more time-consuming and costly parts of game

development. Procedural content generation is the term used for computer generation

of game content (see, for example, Roden and Parberry [1] and Nelson and Mateas

[2]). In addition to taking some of the fiscal and temporal burden from game

developers, real-time procedural content generation can increase a game’s

replayability by the incorporation of the generators into the game itself.

We use the term clutter to refer to non-architectural room. There has been little

previous work on clutter generation. Howard and Broughton [3] offer a method in

which the major pieces of furniture are added by hand and the miscellaneous objects

are added by a genetic algorithm. Tutenel et al. [4] offer a more complete solution

using a constraint solver that requires a set of tagged bounding boxes for each object.

Doran and Parberry [5] list a set of five criteria important to any procedural content

generation system: novelty, structure, interest, speed and controllability. We present

in the paper a procedural clutter generator that we have designed to maximize

controllability but not at the cost of the other four criteria. We argue that our

generator produces interesting room clutter, and demonstrate this with an

implementation of the generator available online for the reader to test for themselves

[6] using any standard web browser. We also argue that our generator is flexible

enough that a designer can control the output to produce appropriate clutter for

different types of rooms.

Proceedings of the 10th International Conference on Entertainment Computing, Vancouver, Canada, 2011.

2 Anchors, Objects & Collisions

A cluttered room does not usually contain a completely random jumble of objects.

There are almost always patterns in the way that things are laid out, for example,

certain objects or sets of objects tend to be grouped in specific areas of a room.

Objects usually appear in either the corners, spaced regularly but not perfectly along

the edges, in a rough grid in the center of the room, or in a specific but logical relation

to other objects in the room.

We capture this intuition with the concept of an anchor point, which marks a place

at which an object can be (approximately) located. Throughout the rest of this paper

our examples will be in 2D for ease of discussion, but the principles are the same in

3D. In 2D the anchors, as mentioned above, would be placed in the corners, spaced

along the edges, and spread out in a grid in the center of the room. The spacing along

the edges and the size of the grid depend on the room type. The placement of these

initial anchor points may be done procedurally or by the designer.

Each object placed by our clutter generator also has a set of anchor points for

further objects. For example, a table may have anchor points for the chairs around it

and points on top for the place settings, center piece, and other clutter. To avoid

having all the objects sit in perfect alignment with each other, objects being placed

have a Gaussian displacement in both position and orientation about the normal of the

surface the object is on, specified by the standard deviations.

It is very likely that randomly-placed objects will end up colliding. If an object

collides with another, we simply generate new random displacements for its position

and orientation, repeating if necessary up to some small number of attempts. If this

fails, it is often safe to throw the object away. However, some items that are important

for gameplay could fail to generate. In this case, we suggest that another random

room layout be generated, again up to some small number of attempts. If that fails, it

is likely that the constraints should be redesigned.

3 Petri Nets

Petri nets date from 1939 [7] and have since been applied to a wide range of

applications (distributed computing, for example [8]). There are many great resources

on the basics of Petri nets, so we will avoid repeating that information here. The Petri

nets we use are a variation on colored, hierarchical Petri nets with inhibitor edges.

The inclusion of inhibitor edges is needed to make the Petri net Turing-complete (see

Peterson [9]).

Tokens in standard Petri nets are indistinguishable. Conversely, in colored Petri

nets the tokens carry extra information. We use this to store the information needed to

place objects in the room. While it may seem natural for tokens to represent objects,

this approach quickly runs into problems. Instead, each token will carry either zero or

one anchor points. Generic tokens, with no anchor point, can be added manually to

the initial net or be created at run time. Tokens with anchor points can only be created

at run time. Colored Petri nets also add extra semantics to the transitions to handle

this extra information. In our implementation, this leads to three significant

differences over standard Petri nets.

First, the relation between the incoming and outgoing edges of transitions must be

made explicit. For each incoming edge, the user must specify which outgoing edge

will get the token or that the token is to be discarded. Similarly, for each outgoing

edge, there is the possibility of making a new generic token, or taking whatever is

coming from one of the incoming edges. Second, for each incoming edge the user can

specify which types of tokens to allow on that edge. This is handled by attaching a

non-unique name to each anchor point and then checking those names when deciding

if the transition is ready to fire. Third and finally, each incoming edge can create an

object at the anchor point represented by the token it is working with. That token is

then replaced by a set of new tokens representing the anchor points on the new object.

While running, one live transition is picked randomly to fire. To control how often

things happen more precisely, a probability is attached to each transition representing

how likely it is to fire if picked. This defaults to 1 which means it will fire if picked.

The pages of hierarchical Petri nets make running the net somewhat difficult. To

avoid that, we instead unroll the net into a single page. To provide the widest range of

possibilities, each place and transition is assigned a scope. A local scope means that

places and transitions with the same name on different pages are considered different,

while a global scope would mean they are the same and should be combined when the

net is unrolled. To make sure that the unrolling works we also introduce links, a

subtype of places. Links are treated like any other place but they cannot have generic

tokens and can only be locally scoped. All page calls connect places in the current

page to links in the called page, which are merged when that page call is unrolled.

4 Implementation

We implemented a prototype of our system in 2D in Java. The room and the initial

anchor points were prepared by hand, but the system is designed to be used alongside

a room generator. Figure 1 shows some of the generated rooms. (The reader is invited

to visit Taylor and Parberry [6] for higher resolution images or to try the generator for

themselves.)

The list of objects and the Petri net are stored in XML files. The system takes these

inputs plus the room with the initial anchor points. It then unrolls the Petri net, creates

a token for each anchor point, and feeds those into the starting place in the net.

Execution consists of making a list of live transitions and firing one randomly. This

continues until there are no live transitions.

Judging our approach by the criteria mentioned in the Introduction, we claim that

our content is novel in that the room contents are unpredictable, yet there is structure

in the way the contents are laid out. As evidence, we provide the pictures in Figure 1.

Our approach is comparable in speed to that of Tutenel et al. [4], and the Turing-

completeness of Petri nets offers better controllability. The approach used by Howard

and Broughton [3] is designed for a specific subset of clutter generation and so suffers

in both categories.

5 Conclusions & Further Work

This paper introduces a procedural clutter generator based on hierarchical, colored

Petri nets that can express any arbitrary computable set of constraints between

objects. It remains to construct a graphical user interface for the designer.

References

1. Roden, T., Parberry, I.: From artistry to automation: A structured methodology for

procedural content creation. In: Proc. 3rd International Conference on Entertainment

Computing, pp. 151-156 (2004)

2. Nelson, M., Mateas, M.: Towards automated game design. In Basili, R., Pazienza, M.

(eds.) AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, Lecture Notes

in Computer Science, vol. 4733, pp. 626-637. Springer (2007)

3. Howard, T., Broughton, R.: Introducing clutter into virtual environments. Journal of

Ubiquitous Computing and Intelligence (3) (2007)

4. Tutenel, T., Smelik, R.M., Bidarra, R., de Kraker, K.J.: Rule-based layout solving and its

application to procedural interior generation. CASA Workshop on 3D Advanced Media In

Gaming And Simulation (2009)

5. Doran, J., Parberry, I.: Controlled procedural terrain generation using software agents.

IEEE Trans. Computational Intelligence and AI in Games 2(2), 111-119 (2010)

6. Taylor, J., Parberry, I.: Clutter (2010), http://www.eng.unt.edu/ian/research/clutter/

7. Petri, C.A.: Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathematik,

Schriften des IIM Nr. 2 (1962)

8. Reisig, W.: Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets.

Springer-Verlag (1998)

9. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall (1981)

Fig 1 – Ten rooms generated with our system using the same Petri net and object set.

