
Controlled Procedural Terrain Generation Using Software Agents

Jonathon Doran∗

Ian Parberry†

Dept. of Computer Science & Engineering
University of North Texas

January 19, 2010

Abstract

Procedural terrain generation is used to create landforms for applications such as computer
games and flight simulators. While most of the existing work has concentrated on algorithms
that generate terrain without input from the user, we explore a more controllable system that
uses intelligent agents to generate terrain elevation heightmaps according to designer-defined
constraints. This allows the designer to create procedural terrain that has specific properties.
Keywords: Procedural content generation, terrain, agent.

1 Introduction

Player demand for more content is increasing as games grow in complexity and scope. Content
such as terrain plays a fundamental role in certain types of games (Forbus [4]), and contributes
greatly to replayability (Sampath [21]). Traditionally developers have hand crafted content for
games, requiring a substantial investment of time and resources. Procedural content generation
is the automated generation of these assets for games (Nelson and Mateas [13]). The desire for
automatic terrain generation stems from the goal of providing the player with novel content without
a large investment of developer resources. Prior work has shown that this generation is feasible
(see, for example, [6, 14, 27]).

We feel that procedurally generated content should ideally have these properties:

• Novelty: contains an element of randomness and unpredictability.
• Structure: is not merely random noise, but contains larger structures.
• Interest: has a combination of randomness and structure that players find engaging.
• Speed: can be quickly generated.
• Controllability: can be generated according to a set of natural designer-centric parameters.

With this in mind, we present a terrain generator based on software agents. This generator
creates heightmaps that are grids containing elevation data at regular points on the map. While
our generator could generate arbitrary size maps, the examples presented in this paper were all
∗Author’s address: Dept. of Computer Science & Engineering, Univ. of North Texas, 1155 Union Circle #311366,

Denton, Texas 76203–5017, U.S.A. Email: jhd@unt.edu.
†Email: ian@unt.edu.

1



262,144-vertex, 512 × 512 vertex maps. The size of a rendered scene depends on the distance
between grid points, and in our case we scaled the terrain so that grid points were approximately
1 meter apart, giving a total area of about 1/4 of a square kilometer.

Novelty in generated terrain leads to enhanced gameplay, since the player will need to explore
the terrain (Sampath [21]). As terrain agents make use of a pseudorandom number generator, each
seed provided to the generator will correspond to a distinct map that adheres to the constraints
provided by the designer. The generator may be executed again with the same seed at a later
time and will produce the same heightmap, or another seed that will produce a different heightmap
with similar features. This repeatability is desirable when developing applications, and the seed
also provides an ultra compact representation of the heightmap. The heightmaps generated from a
different seeds will appear significantly different to the player to the degree that they will feel that
they have not seen this area before.

While a procedural terrain generator should create unique maps, which means using enough
randomness to avoid duplicating identifiable map features, at the same time this randomness should
not lead to a loss of internal structure. Structure in terrain means that the map makes sense and
is internally consistent, as opposed to looking as if a random set of features were placed on the
map. Our hypothesis is that this can be achieved by requiring agents to work within constraints,
rejecting any putative changes that fail to meet these constraints.

The definition of interesting is another loosely defined term that is related to but not necessarily
identical to novelty and structure. A map may be novel and structured but fail to inspire the player,
and likewise a map may be interesting but not novel. While we make no attempt to define what
makes a map interesting, we note that this is an emergent property that can be influenced by the
parameters and constraints provided to the agents. We suggest that one’s interest in a heightmap
is a function of anticipated utility, as well as variety of landscape features.

The idea of terrain generation speed brings to mind the definition of real-time. As with a real-
time system, we define “quickly” as “fast enough that the results are ready when needed”. For
some applications this may require that terrain be generated in a fraction of a second, while in
other applications having terrain ready in a minute or two is sufficient. Our example uses 512×512
heightmaps, which took on the order of 20 seconds to create using a 3.2GHz Pentium 4.

Finally, there is the issue of controllability. A terrain generator with natural feature-based
parameters will enable game companies to generate terrain using an employee who is an artist or
designer, and not necessarily an engineer or a programmer. One can posit a simple design tool
with tabs and sliders that allows the designer to create random terrains with a specific look and
feel for a particular game or game genre. The designer should not necessarily need to understand
the underlying mathematics of fractals to produce a range of custom terrains.

The main body of this paper is divided into three sections. Section 2 consists of a short literature
survey. Section 3 begins with discussion of the agent-based approach in general, our use of agents
to generate different terrain features, and has subsections describing the five different types of
terrain agent that we used in our proof-of-concept implementation: Coastline, smoothing, beach,
mountain, and river agents. Section 4 describes our implementation and discusses our evaluation
methods.

2



2 Previous Work

Previous work on generating terrain has mostly been based on the use of fractal techniques. Most
of the existing systems have a very small number of designer selectable parameters, and as a result
provide the designer with limited opportunities to control what type of terrain is generated. The
aim of this paper is to allow the designer more (and more natural) control over the generated terrain
without sacrificing too much of the other four desirable attributes of novelty, structure, interest,
and speed discussed in Section 1.

Olsen [15] discusses erosion algorithms that use fractal Brownian motion (1/f noise), and per-
turbed Voronoi diagrams. He provides some metrics for evaluating terrain (such as low average
height and a high standard deviation for slope) which are used to compute a game suitability score
used to evaluate generated terrains. Musgrave, Kolb, and Mace [12] use noise synthesis to create
eroded fractal terrain. Control of this algorithm appears to be limited to modulation of the noise
frequency, in particular scaling and translation of values. Control does not appear to be feature-
based, that is, designers do not express their desires in terms of terrain features. Evaluation of
their technique was limited to the efficiency of generation, not the quality or ease of use.

Szeliski and Terzopoulos [26] address fractal terrain generation in one section of their paper.
Their approach uses real digital elevation data which they perturb using splines. Fractals are used
to add in detail to the resulting heightmaps. The character of the output can be controlled by the
initial elevation data, the functions used to determine the spline shapes, and the amount of noise
used by the fractal generation. Van Pabst and Jense [28] generate terrain by creating a multifractal
field based on four parameters. A separate utility is used to analyse existing digital elevation data
and extract these four parameters. Belhadj and Audibert [3] create ridge and river networks and
then use fractals to transform this data into a complete heightmap. The ridge and river network
are created by randomly depositing particles and allowing them to interact with each other and the
terrain. As with most fractal-based approaches, their algorithm does not appear to be controllable.
Pi et al. [18] create fractal landscapes using Perlin noise. They do not indicate any method of
controlling the quality of the generated terrain other than a scaling term applied to the noise.

Ong et al. [16] apply genetic algorithms to terrain generation, and also focus on controllability.
Their approach uses a sketch of the boundary which could be either designer-provided or machine
generated. A database of representative heightmap samples appears to be the main form of control
for their algorithm. Frade et al. [5] present another genetic technique which they claim is more
controllable than fractal techniques.

Li et al. [11] use machine learning to model example heightmaps and then later use these models
to synthesize new terrain. This requires that a suitable set of training examples be created for each
desired output architype. One issue with machine learning is that it is often not clear what is being
learned, that is to say that one does not necessarily have control over what features in the training
data are important.

Kamal and Uddin [8] present a technique that is minimally feature controllable. This technique
repeatedly creates random polygons using a series of randomly placed lines and performs random
walks that raise the points in these polygons. We believe this technique can be equated to Brownian
motion, with the main difference being the order in which the individual points are changed. This
technique offers limited control, as one is able to create multiple mountains and mountain ranges.

Lechner et al. [9] use an agent-based approach to determine urban land use in a growing city.
They share with us a focus on producing a tool for the non-technical designer, in this case artists
and geographers. Their solution was controllable, but the parameter choices seemed rather abstract

3



and suggested that designers would need to learn the effects through experimentation rather than
intuition.

Our approach differs from these papers in that the input to our generator is a set of parameters
that describe the quantity and quality of familiar terrain features, such as mountains and rivers.
Once such a set of parameters is defined, the generator can create variations on that theme without
further input from the designer. Only one of the above papers (Kamal and Uddin [8]) has any type
of feature-level control, and some of the previous work (including [16, 11, 28]) was example based,
requiring the designer to provide examples of the types of output desired.

3 Software Agents

While there currently is no consensus on what a software agent is (see, for example, Rudowsky [19]),
we may start with Russell and Norvig’s definition [20] of an agent that perceives its environment
through sensors and acts on it through effectors. All agents are given autonomy, other than some
constraints on what the agent is to produce. Using Russell and Norvig’s list of agent properties,
our agents: are accessible, are deterministic in the results of their effectors, are non-episodic, work
in a dynamic environment, and work in a discrete environment.

Our agents run in three distinct phases, which can be loosely summarized as coastline, landform,
and erosion. In the first or coastline phase, a large number of agents work to generate the outline
of a landmass, possibly surrounded by water. In the second or landform phase, a larger assortment
of agents work to define the features of the map (raising mountains, shaping the lowlands, creating
beaches). In the third or erosion phase, rivers are added by eroding parts of the terrain. Agents
run concurrently and asynchronously within each phase.

Agents are allowed to see the current elevation of any point on the map, and are allowed to
modify these points at will. The presence of other agents will likely cause the environment to
change around them without warning. Observing the height (and derived values such as being
on a coastline) and modifying heights are the extent of an agent’s actions and percepts. These
observations are analogous to sensory perceptions, and the modification is analogous to the use of
effectors

Each agent when it is created receives a number of tokens that it will consume as discrete actions
are taken. This limits the lifetime of an agent, and is one way in which the terrain generation can
be influenced by the designer. Macro features of the map may be controlled by the designer by
specifying the number of each agent type to run and the number of tokens each agent receives.
For example, since each river agent produces one river the number of rivers is altered by raising or
lowering the number of river agents. We provide a default set of agents and tokens based on the
map size. This default set can be overridden by the designer to create different types of terrain.

As a proof-of-concept we employ five different types of agents, although it should be kept in
mind that many more agent types are possible. Our five agent types are as follows:

1. Coastline agents create a landmass, possibly surrounded by water.
2. Smoothing agents perform random walks, averaging the height of nearby points.
3. Beach agents produce flat areas on parts of the coastline.
4. Mountain agents raise mountain chains.
5. River agents erode terrain producing rivers that run from mountains to the ocean.

Each of these agent types is treated in a separate subsection below.

4



3.1 Coastline Agents

Coastline agents create the outline of the landmass before any heightmap data is calculated. Coast-
line generation starts with a single agent that is responsible for the entire landmass. This agent
subdivides the task by creating multiple subordinate coastline agents and assigning them part of
the landmass to work on. These in turn subdivide, and the process repeats until each agent is
working with a small number of vertices (on the order of 1000). Each of these agents work indepen-
dently of other agents, but all agents have access to the environment. In this case, the environment
consists of the landmass in whatever state of development it may be in when the agent is running.
Agents modify the environment by raising points above sea level (initially the entire map is below
sea level).

Each agent starts with a single seed point (on the edge of the landmass), a preferred direction,
and the number of points the agent is expected to generate. If for some reason the seed point
is surrounded by land by the time the agent begins executing, the agent begins searching in its
preferred direction for a coastline point. Once the agent places itself on the coastline it creates two
points at random: one is an attractor point, the other is a repulsor. These must be in different
directions. When the agent evaluates candidate points for elevation above sea level, points closer
to the attractor point are scored higher by the agent, and points closer to the repulsor are scored
lower.

The score for a point p is given by dr(p) − da(p) + 3de(p), where da(p) is the square of the
distance from p to the attractor, dr(p) is the square of the distance from p to the repulsor, and
de(p) is the square of the closest distance from p to the edge of the map. These terms encourage an
agent to move towards the attractor, move away from the repulsor, and to avoid the map edges as
much as possible. Since each agent randomly selected its attractor and repulsor points, each agent
would score a given point differently.

The agent expands the landmass by adding points to the edges of the mass. It calculates a
score for all surrounding points that are not part of the landmass, and moves to the highest scoring
point. This point is then elevated above sea level, becoming part of the coastline.

Note that multiple agents are running concurrently, and that each agent will have unique goals
and scoring biases. Agents will elevate one point above sea level, and then warp to another part of
the coastline they are working on. This causes agents to operate at random, but in a local area of
the map. The goal is to give map features some localized consistency, rather than adding points
at random to the coastline. This effect is seen by the presence of capes that have smaller capes.
The higher level agent will bias its children, who will in turn bias their children to create smaller
features.

Each coastline agent has two configurable parameters that collectively define the range of ver-
tices where an agent will be elevating points rather than subdividing its task. Figure 1 shows the
shape of three landmasses created by varying these parameters. We used the same seed for the
random number generator in each of these three runs so that variations in coastline shape are due
only to changes in agent actions. We requested 150-220 vertex actions for the landmass on the
left, 500-550 vertex actions for the landmass in the middle, and 950-1000 vertex actions for the
landmass on the right. In general, a lower vertex range will result in more agents operating on
smaller regions, and as a result the coastline will have more fine detail than a landmass that had a
larger vertex range. A landmass created with a high vertex range will have larger, wider features
and will tend to be more circular, as is the case with the landmass on the right of Figure 1.

5



Figure 1: Coastlines produced by coastline agents with (left to right) small, medium and large
action sizes

Coastline-Generate(agent)
1 if tokens(agent) ≥ limit
2 then
3 create 2 child agents
4 for each child
5 do
6 child ← a random seed point on parent’s border
7 child ← 1/2 of the parent’s tokens
8 child ← a random direction
9 Coastline-Generate(child)

10 else
11 for each token
12 do
13 point ← random border point
14 for each point p adjacent to point
15 do
16 score p
17 fill in the point with the highest score

3.2 Smoothing Agents

Smoothing agents make random walks around the map adjusting the height of an arbitrary point
p to be the average of points in an extended von Neumann neighborhood of p consisting of the
four orthogonal map points surrounding p on the elevation grid and the four points beyond these
(see Wolfram [29]). A weighted average height is calculated, with the center point given 3 times
the weight of the other points. Therefore nine points with a total weight of eleven are used. This
provides some inertia to prevent elevations from rapidly changing. We believe that the extended
neighborhood is responsible for the emergence of “interesting” curved features on the map. Use of
an 8-cell Moore neighborhood resulted in less “interesting” results.

Each smoothing agent returns to its point of origin periodically. This encourages smoothing

6



agents to operate in a local area, which is useful when certain features of the map need more
smoothing than others.

The only configurable parameter for smoothing agents is the number of times that the agent
will return to its start point. Setting this number to a large value causes the agent to spend most
of its time near the start point. This provides a great deal of smoothing for that area, rather than
less smoothing spread over a larger area in the case where the agent is allowed to wander further
away.

Smooth(starting-point)
1 location← starting-point
2 for each token
3 do
4 heightlocation ← weighted average of neighborhood
5 location← random neighboring point

3.3 Beach Agents

Beach agents create flat sandy areas next to the main coastline after the coastline agents have
finished. Before they begin, points on the main coastline are identified using breadth-first search.
Beach agents then use these points to place themselves on the coastline. They then perform random
walks flattening areas of beach, following the shoreline. Beach agents adjust the height of the beach
to allow random fluctuations in elevation so the beach is not a uniform flat space. After moving
to a spot on the coastline, the agent will lower the nearby points and jump inland to perform a
random walk. This creates variable sized sandy areas that can extend a short distance from the
water. After the random walk is complete, the agent returns to the coastline and continues to walk
along the shore. If an agent becomes stuck (for example running into a mountain range) and is
unable to continue its walk, it moves to another randomly chosen point on the main coastline and
continues. Beach agents avoid high areas, so any mountains that are next to the ocean are left
alone.

One of the more important parameters for the beach agent is the altitude limit, above which
the agent abandons an area and moves elsewhere. When the altitude limit is low, the raised area
near the middle of the beach is allowed to remain. When the altitude limit is high, the agent is
able to continue its work in this area and flattens the mound.

Beach agents set the height of the beach to random values within a specified range specified by
the designer. When this range is narrow, flat beaches are created. When it is raised a bit we see
more bumps. The designer can also control the width of a beach by indicating how far inland the
beach agents should begin flattening, and how long their random walk should be. Figure 2 shows
the effects of varying the width of a beach.

7



Figure 2: Beaches produced by beach agents with (left to right) small, medium, and large beach
width.

Beach-Generate(starting-point)
1 location← starting-point
2 for each token
3 do
4 if heightlocation ≥ limit
5 then
6 location← random shoreline point
7 flatten area around location
8 smooth area around location
9 inland← random point a short distance inland from location

10 for i← 0 to size(walk)
11 do
12 flatten area around inland
13 smooth area around inland
14 inland← random neighboring point
15 location← random neighboring point of location

3.4 Mountain Agents

Mountain agents raise mountain ranges. Each starts at a random point on land and selects a
preferred direction of travel. As a mountain agent moves in this direction it raises an inverted V
shaped wedge of points with the center line becoming the ridge line. The agent will move along
this ridge and will periodically decide to change direction within a 90 degree cone from its original
direction. The effect is that the agent zig-zags but heads generally in the same direction. If an
agent runs into the ocean or the map edge, it changes direction to avoid this obstacle.

The width of the V-shaped wedge determines the general width of the mountains, and to a large
degree the slope of the mountain sides. The rate at which the slope drops in elevation is randomly
determined for each wedge (within a designer-specified range), which produces some interesting
features on the sides of the mountains. Mountain agents also periodically create foothills running
perpendicular to the mountain range axis. Smoothing is performed on the mountain after the
wedge is raised, blending the heights and leaving gentler transitions between nearby points.

Prior terrain generators have used other techniques for creating mountains, such as fault gen-
eration [10, 23], fractal midpoint displacement [24], and point deposition [2, 15, 25]. While we

8



Figure 3: Mountains with narrower features (left), and with wider features (right).

make no explicit attempt to simulate faults, our mountain agent’s terrain elevation is similar, with
the major difference being that the mountain agent determines its path as it operates, avoiding
obstacles in its way, whereas fault simulators determine the fault’s position prior to modifying the
landscape.

The Mountain agent’s simplistic wedge raising produces acceptable results, mainly due to the
interaction of the smoothing agents that are making random walks over the terrain. Figure 3 shows
the effects of widening a mountain and increasing its foothill length.

Mountain agents are the most configurable of all agents, as they introduce most of the inter-
esting features on a landscape. Without them the heightmap would be mostly flat. The designer
determines the number of mountain agents that will run, and specifies how many tokens each
mountain agent will receive. A single mountain agent will randomly position itself on the map,
decide on direction, and begin elevating terrain. It stops when it runs out of tokens or is unable to
proceed due to some obstacle. Mountain agents attempt to turn to avoid obstacles, but this ability
is limited to ensure that agents do not randomly wander the map.

Mountain agents are given a maximum altitude, and vary the generated height within a specified
range below this height. Mountain agents may also be assigned a width and slope, which allows them
to either spread out, or to create tall narrow ranges. While mountain agents perform smoothing,
they also follow this up by adding noise to restore some of the character lost during smoothing.
This noise is specified by a probability of altering a point’s altitude, and a variance. When a point’s
altitude is modified during this roughening phase, a random value up to the variance parameter is
either added or subtracted from the point’s current altitude.

Mountain agents periodically generate foothills perpendicular to the range axis. The lengths
of these are randomly determined from a configurable range, as is the frequency at which these
foothills are created.

9



Figure 4: Hill agents produce hills, similar to the way mountain agents produce mountains.

Mountain-Generate(startingpoint)
1 location← starting-point
2 direction← random direction
3 for each token
4 do
5 elevate wedge perpendicular to direction
6 smooth area around location
7 location← next point in direction
8 every n-th token
9 do

10 direction← original-direction ± 45-degrees

3.5 Hill Agents

Hill agents are a special case of the mountain agent. As with a mountain agent, the designer
specifies the number of tokens assigned to each hill agent, indirectly determining the size of each
hill. Hill agents generally create very short mountain ranges with a lower altitude, and no foothills,
as seen in Figure 4. Hill agents may have their altitude range determined by specifying a maximum
altitude and a variance. Since hill agents are a special case of mountain agents, these parameters
work exactly as they do for mountain agents.

Hill-Generate(mountain)
1 location← random point at the base of mountain
2 direction← direction away from mountain centerline
3 for each token
4 do
5 heightlocation ← weighted average of neighborhood
6 raise a wedge perpendicular to direction
7 location← next point in direction

10



3.6 River Agents

River agents create water channels between points near mountains and the ocean. Each agent
creates one river. A river agent begins by choosing a random point on the coastline and a random
point on a mountain ridge line. It begins at the ocean and moves in the general direction of the
mountain point, following the elevation gradient uphill. This causes the river to meander, rather
than creating a perfectly straight river. When the agent runs into a mountain it stops and begins
to backtrack its path downstream. During this phase of the agent’s operation it will lower a wedge
of terrain, similar to the way mountain agents raise heights. The width of this wedge increases as
the river moves downstream. This downhill phase stops if the river encounters another river, in
effect making one of the rivers a tributary of the other.

The river agent avoids creating rivers that are too short, or which fail to reach the mountains.
An agent makes multiple attempts to place a river, but will eventually give up if too many attempts
are unsuccessful. As a result, it is possible to specify river agents and not have rivers placed. The
primary cause of river agents failing to place a river is that every attempt to run a river uphill
encounters a mountain before the river’s minimum length is reached. This is more of a problem with
smaller maps, since the mountains dominate small maps more than larger maps and are more likely
to be found near coastlines. This the most important parameter for a river agent is probably the
minimum length. River agents attempt to place rivers on the terrain, running from a mountainous
region to the ocean. The minimum length parameter causes the agent to abort attempts to place
rivers smaller than this value, and to instead search for a place to create a longer river.

River length is a function of the coastal and mountain points selected, as well as the height of
the terrain between these points. Rivers are created uphill, and will stop when the terrain becomes
too mountainous, even if the preselected mountain point has not been reached. The alternative
would be to allow the river agent to create a channel through one mountain to reach the other. The
designer is able to specify the maximum altitude of the terrain allowed before the river terminates.
Other altitude limits are the maximum allowed altitude on the shoreline (to prevent waterfalls at
the coastline), and the minimum altitude of the mountain point (to prevent rivers from starting
at foothills or on flat terrain). A minimum distance from the coastline to the mountain point may
also be specified, which prevents rivers from starting near the coast but heading towards a more
remote part of the coastline.

River agents require a backoff parameter that causes them to back away from mountains when
the altitude limit is exceeded. This prevents rivers from climbing a cliff and then starting their
downhill building phase. In effect, this type of behavior would allow rivers to start at the top edge
of cliffs. When the agent’s altitude limit is reached, the agent will back off a number of vertices
along its path, and then begin cutting the river into the landscape.

River agents may optionally lower the terrain on the mountain side of the river. This causes
a deeper channel to be formed, as opposed to gentler sloping river banks. Rivers are assigned an
initial width, which then increases over time as the river runs downhill. This width, the frequency
of widening, and the downhill slope of the cut channel may all be specified. Figure 5 shows two
generated rivers. The river on the left is a dry riverbed created by using a shallow initial altitude
drop, and a shallow slope. The rivers on the right were created by specifying multiple river agents,
plus a narrow target altitude range for the coastline.

11



Figure 5: River agents generated a dry river bed (left), and three rivers that meet at the ocean
(right).

River-Generate()
1 coast← random point on coastline
2 mountain← random point at base of a mountain
3 point← coast
4 while point not at mountain
5 do
6 add point to path
7 point← next point closer to mountain
8 while point not at coast
9 do

10 flatten wedge perpendicular to downhill direction
11 smooth area around point
12 point← next point in path

4 Implementation and Evaluation

We have implemented a framework that executes runnable agents in a random order, and for a
random slice of time (within a window). We assume atomic locking exists at the vertex level. The
first phase of agents, those that produce the coastline, do not share this scheduling system, but
there is nothing in these agents which depend on other agents. The purpose of this framework is to
demonstrate the independence of agents. The simplistic behavior of these agents results in complex
interactions among agents, and that the terrain is an emergent result.

Our agent-based terrain generator lends itself to implementation in either a purely procedural
environment, or in a designer-centric environment. In the former a game could use our technique
to generate terrain on-the-fly, guided by agent settings provided by the publisher in advance or in
real time. In the latter environment in which the publisher requires more control over the content,
a designer could use our technique to generate terrains that are first screened and/or modified by
a human being before being distributed. Note that unmodified terrains lend themselves to easy

12



Figure 6: Screen shot of our prototype designer interface.

13



distribution since our terrains are uniquely specified by the parameters and the initial random
number seed. We have created a prototype tool (see Figure 6) that lets designers experiment with
the various agent parameters and view the resulting terrain in 3D using the SAGE engine [17],
which was also used to create the screenshots used in this paper. Note that the parameters tend
to be high-level designer-centric values that correspond in an intuitive way to terrain features.

We made no formal attempt to ask individuals to evaluate the quality of the generated terrain,
as we felt that such a study was beyond the scope of this paper. We provided a list of attributes
earlier which we believe any good procedural content generation system should have. We note that
others have provided similar lists which we contrast with our own. For example, Ong et al. [16]
suggested that the qualities should be as follows:

• adaptive
• innovative
• scalable
• intuitive

We believe our approach satisfies each of these traits. Ong’s definition of adaptive is met as our
use of agents allows different terrain types to be created, and new terrain types may be added by
writing new agents. We believe that the innovation requirement is met since terrain features are
an emergent property of the intra-agent interaction. Our system is scalable as the map size, the
number of agents, and the number of tokens given to each agent may be changed. We believe our
set of designer-specified parameters results in intuitive control of terrain generation. For example,
using the graphical front end the designer may manipulate sliders that correspond to terrain features
instead of being asked to modify abstract parameters that do not directly correspond to the features
of the generated terrain.

Saunders [22] suggested the following traits in his Master’s thesis:

• require a low degree of human input
• permit a high degree of human control
• be completely intuitive to control
• be able to generate a wide variety of recognisable terrain types and features, in believable

relationship to one another
• produce models at arbitrary levels of detail
• run quickly enough to be used in real-type, dynamic applications
• be extensible to support new types of terrain

We believe our approach satisfies all but the real-time requirement. The designer is asked to
select parameters for generation, and defaults exist for all parameters. As a result, the designer may
generate multiple heightmaps with the same parameters without providing any further input. Since
our parameters deal with geographic features rather than abstract concepts like noise, we feel that
they are intuitive and accessable to a non-technical designer. When the effect of a parameter is not
obvious, we feel that it is easily learned by experimentation since the parameters are grouped by
geographic feature type. Our agent-based technique allows the creation of arbitrary levels of detail
by varying the size of the generated heightmap, although other parameters will need to be similarly
scaled. The variety of agents in the current implementation allows for a variety of recognisable
terrain types, and as new agents may be added the system is extensible.

We do not feel that real-time is a necessary requirement for an ideal terrain generation system,
unless one adopts a loose definition of real-time. If an application has terrain available when it is

14



needed, even if the terrain was generated offline, we believe the terrain generator has performed its
job. While there are applications that require that terrain be generated as a player moves around
the world, there are many successful commercial games that have shipped with pre-generated
terrain. In order to preserve generality in our list of traits, we therefore dispense with a real-time
requirement.

5 Conclusion

The screenshots presented represent only a small fraction of the possible heightmaps that can be
generated by this system. We feel that this agent-based terrain generation system produces novel
content that is influenced by the wishes of the designer. They are able to envision a desired look,
and by modifying agent constraints cause the system to generate heightmap after heightmap that
conform to their wishes. Figure 7 shows an assortment of random landscapes that differ considerably
from each other. We are able to create flat areas, areas with gently rolling hills, and mountainous
regions with passes and valleys. The coastlines have interesting shapes, and each one is unique.
The reader who wishes to perform their own evaluation may download the source code from [1].

While the evaluation of generated content is subjective, and is best left to the player, we are
able to make some judgments based on our experiments with this generator. Exploring a map feels
like actual exploration, since we have no knowledge of what may lie around the corner. Curiosity
about the environment is a factor in the motivation of players to play a game [6], and is therefore
a desirable feature when creating game content.

There is a perhaps unmeasurable quality that causes us to want to play on the terrain. This
may be partially a function of the landscape feeling like it belongs, and also a function of the variety
of landscape features found on each map. If one wants to find an interesting bay or a hidden valley,
there is likely one to be found. These features help to maintain a player’s interest, and perhaps
increase replayability in a game. Previous games that generated random terrain such as Empire
or Civilization showed that the same set of rules when played on a different terrain can result in
different gameplay. This sense of a mountain belonging on the map is an example of structural
consistency. There is an overall structure to a heightmap, which the agents create and maintain.

The primary benefit of our agent-based terrain generation system is its intuitive controllability.
Rather than running a generator and accepting whatever output it produces, we have introduced a
high degree of controllability without requiring the designer to take an active role in the generation.
One is able to dictate the qualities they desire in the terrain and have random heightmaps generated
that correspond to their wishes.

The success of this approach comes not from designing highly complex agents, but rather by
allowing them to interact in unpredictable, but controllable ways. Jennings and Wooldridge [7]
discuss this on a more general level, stating that “Because the behavior of individual agents is not
uniquely determined at design time, the behavior of the system as a whole can only emerge at run
time.”

References

[1] Agent Based Terrain Generation, 2010. http://www.eng.unt.edu/ian/research/terrain.

15



[2] N. H. Anh, A. Sourin, and P. Aswani. Physically Based Hydraulic Erosion Simulation on
Graphics Processing Unit. In GRAPHITE ’07: Proceedings of the 5th international conference
on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pages
257–264, New York, NY, USA, 2007. ACM.

[3] F. Belhadj and P. Audibert. Modeling landscapes with ridges and rivers: bottom up approach.
In Proceedings of the 3rd international conference on Computer graphics and interactive tech-
niques in Australasia and South East Asia, pages 447–450. ACM New York, NY, USA, 2005.

[4] K. Forbus, J. Mahoney, and K. Dill. How qualitative spatial reasoning can improve strategy
game AIs. IEEE Intelligent Systems, 17(4):25–30, 2002.

[5] M. Frade, F. De Vega, and C. Cotta. Breeding Terrains with Genetic Terrain Programming:
The Evolution of Terrain Generators. International Journal of Computer Games Technology,
2009, 2009.

[6] S. Greuter, N. Stewart, and G. Leach. Beyond the horizon. Image Text and Sound Conference,
2004.

[7] N. R. Jennings and M. Wooldridge. Applications of intelligent agents. In N. Jennings and
M. Wooldridge, editors, Agent Technology: Foundations, Applications, and Markets, chapter 1,
pages 3–28. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

[8] K. R. Kamal and Y. S. Uddin. Parametrically controlled terrain generation. In GRAPHITE
’07: Proceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia, pages 17–23, New York, NY, USA, 2007. ACM.

[9] T. Lechner, P. Ren, B. Watson, C. Brozefski, and U. Wilenski. Procedural modeling of urban
land use. In International Conference on Computer Graphics and Interactive Techniques. ACM
New York, NY, USA, 2006.

[10] G. W. Lecky-Thompson. Real-Time Realistic Terrain Generation. Game Programming Gems,
1:484–498, 2000.

[11] Q. Li, G. Wang, F. Zhou, X. Tang, and K. Yang. Example-based realistic terrain generation.
Lecture Notes in Computer Science, 4282:811, 2006.

[12] F. Musgrave, C. Kolb, and R. Mace. The synthesis and rendering of eroded fractal terrains.
ACM SIGGRAPH Computer Graphics, 23(3):41–50, 1989.

[13] M. Nelson and M. Mateas. Towards Automated Game Design. Lecture Notes in Computer
Science, 4733:626, 2007.

[14] M. Nitsche, C. Ashmore, W. Hankinson, R. Fitzpatrick, J. Kelly, and K. Margenau. Designing
Procedural Game Spaces: A Case Study. Proceedings of FuturePlay, pages 10–12, 2006.

[15] J. Olsen. Realtime Procedural Terrain Generation. Technical report, IMADA, University of
Southern Denmark, 2004.

16



[16] T. Ong, R. Saunders, J. Keyser, and J. Leggett. Terrain generation using genetic algorithms. In
Proceedings of the 2005 conference on Genetic and evolutionary computation, pages 1463–1470.
ACM New York, NY, USA, 2005.

[17] I. Parberry, J. Nunn, J. Scheinberg, E. Carson, and J. Cole. SAGE: A Simple Academic Game
Engine. In Proceedings of the Second Annual Microsoft Academic Days on Game Development
in Computer Science Education, pages 90–94, 2007.

[18] X. Pi, J. Song, L. Zeng, and S. Li. Procedural Terrain Detail Based on Patch-LOD Algorithm.
Lecture Notes in Computer Science, 3942:913, 2006.

[19] I. Rudowsky. Intelligent Agents. Communications of the Association for Information Systems,
14(290):275, 2004.

[20] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, 1995.

[21] D. Sampath. ABRCon, Adaptive oBject Re-CONfiguration: an approach to enhance, repeat
playability of games and repeat watchability of movies. In Proceedings of the 2004 ACM
SIGCHI International Conference on Advances in Computer Entertainment Technology, pages
313–316. ACM New York, NY, USA, 2004.

[22] R. Saunders. Terrainosaurus: realistic terrain synthesis using genetic algorithms. Master’s
thesis, Texas A&M University, 2007.

[23] J. Shankel. Fractal Terrain Generation–Fault Formation. In Game Programming Gems, pages
499–502. Charles River Media, 2000.

[24] J. Shankel. Fractal Terrain Generation–Midpoint Displacement. In Game Programming Gems,
pages 503–507. Charles River Media, 2000.

[25] J. Shankel. Fractal Terrain Generation–Particle Disposition. In Game Programming Gems,
pages 508–511. Charles River Media, 2000.

[26] R. Szeliski and D. Terzopoulos. From splines to fractals. ACM SIGGRAPH Computer Graph-
ics, 23(3):51–60, 1989.

[27] J. Togelius, R. De Nardi, and S. Lucas. Towards automatic personalised content creation for
racing games. Proceedings of the IEEE Symposium on Computational Intelligence and Games,
2007.

[28] J. Van Pabst and H. Jense. Dynamic terrain generation based on multifractal techniques. In
Proc. Intl. Workshop on High Performance Computing for Computer Graphics and Visualiza-
tion, pages 186–203. Citeseer, 1995.

[29] S. Wolfram. Cellular Automata. Los Alamos Science, 9(2-21):42, 1983.

17



Figure 7: An assortment of random landscapes

18


