
SAGE: A Simple Academic Game Engine

[Extended Abstract]

Ian Parberry
Jeremiah R. Nunn
Joseph Scheinberg

Erik Carson
Jason Cole

Department of Computer
Science & Engineering

University of North Texas
Denton, TX, USA

ian@unt.edu

ABSTRACT
SAGE is a simple academic game engine for use in a game pro-
gramming class in the undergraduate Computer Science curricu-
lum, designed specifically as a core onto which students can add
their own game engine features. SAGE consists of a sequence of
demos written in C++ using Microsoft DirectX, each extending its
predecessor in a process called incremental development. Incre-
mental development is a proven pedagogical technique used for the
education of game programmers at the University of North Texas
since 1997.

Categories and Subject Descriptors
K.3.2 [Computing Mileux]: Computers and EducationComputer
and Information Science Education[Computer science Education]

General Terms
Design, Experimentation

Keywords

1. INTRODUCTION
In 1993 we introduced a game programming course to the un-

dergraduate computer science program at the University of North
Texas. At the time this was a difficult task, both because there
were no course materials, books, or web pages available, and be-
cause the industry-driven focus of the class and the perceived trivial
nature of entertainment computing made the subject matter contro-
versial. Interestingly, the objections came from faculty - both the
students and the administration were in favor of the class. Since
1993 the initial game programming class has evolved with the fast-
moving game industry, and spawned a second, advanced game pro-

gramming class. After more than a decade of operation, our game
programming classes have positioned our alumni for employment
in companies including Acclaim Entertainment, Ensemble Studios,
Gathering of Developers, Glass Eye, iMagic Online, Ion Storm,
Klear Games, NStorm, Origin, Paradigm Entertainment, Ritual,
Sony Entertainment, Terminal Reality, and Timegate Studios. For
more information about these classes, see [11, 12].

Despite a rocky beginning, game programming is now gaining
acceptance in academia (see, for example, Adams [1], Becker [2],
Faltin [4], Feldman and Zelenski [5], Jones [7], Moser [8], and
Sindre, Line, and Valvåg [13]), resulting in a proliferation of new
classes and programs both internationally and nationwide and a
move towards a professionally recommended curriculum in game
studies [6]. In contrast to institutions such as Digipen, Full Sail,
and SMU’s Guildhall that offer specialized degrees or diplomas in
game programming, UNT offers game programming as an option
within a traditional computer science curriculum.

The students in our game programming classes are usually se-
niors in the computer science program, who are technologically
savvy and experienced programmers. They are usually quite capa-
ble of reading the documentation for game APIs, such as Microsoft
DirectX, themselves. For them, the biggest road-block is pick-
ing the small subset of techniques that they actually need from the
wealth of options available. The lectures focus on getting started,
and leave exploration of options in the more than capable hands of
the students. Our game programming classes have a positive effect
on undergraduate enrollment in the Department of Computer Sci-
ence and Engineering at UNT. Out of almost 200 students from the
prerequisite classes surveyed in 1993, 49% of students intended to
take the introductory game programming class, and 39% said that
the class was a contributing factor to their presence in the Computer
Science program at UNT (for full figures, see [12]).

Selection of a game engine is a major decision that can make
or break a game programming class. Students learning game pro-
gramming in academia need an engine that is flexible, extensible,
stable, and well-documented. Industry game engines such as Ver-
tigo’s Quake II .NET, Unreal Technology’s Unreal Engine, and
Valve’s Half Life 2 engine, are large, complex, and relatively com-
plete. An academic game engine should in contrast be small, sim-
ple, and incomplete. It should be suitable as a foundation on which
students can build, and above all be easy to understand and mod-
ify, especially by relatively inexperienced students. It should illus-



trate new concepts in enough detail for students to get started, but
should avoid “completeism”. It should obey the educational prin-
ciple “proceed from the known into the unknown”.

The main part of this paper is divided into five sections. The
first section lists the requirements for a simple game engine, and
the technology necessary to implement them. The second section
gives an overview of the SAGE project. The third section describes
the seven SAGE demos in more detail. The fourth section describes
our experience with SAGE in the classroom in Spring 2006. The
fifth section discusses our choice of DirectX and Visual C++ for
this project.

2. MINIMUM REQUIREMENTS
SAGE is designed to provide the minimum requirements for a

game, which are a 3D world that a player can explore in real time,
with interesting objects in it, with which the player can interact.
The key adjectives in the preceding sentence are real time and in-
teractive. The technology necessary for this includes:

• A graphics renderer, using pixel shaders and HLSL. It is es-
sential for student morale that the rendering engine be close
to cutting edge, and to provide the latest shader technology.

• Objects, including a method for importing 3D models cre-
ated by artists, and an object manager that takes care of ob-
ject creation, behaviour, rendering, and destruction.

• A 3D world, consisting of terrain and some method for level-
of-detail to increase rendering speed.

• Input from the keyboard, mouse, and joystick to enable the
player to interact with the world and the objects in it.

• Collision detection to enable interaction between the player,
the objects, and the world.

• A particle engine to enable visual effects that follow from
that interaction.

3. SAGE OVERVIEW
SAGE is a 3D game engine developed as a sequence of demos,

each built on its predecessor, in a process called incremental devel-
opment. Incremental development has been used in the construc-
tion of a billboard demo in a simple 3D world with limited cam-
era movement (Ned’s Turkey Farm, see Figure 1) for introductory
game programming classes at UNT since 1997 (see [11]). Earlier
versions have been published in two books [9, 10]. The aim is not
to teach this game per se, but rather to teach the development of
games in general using this engine as an example. It is designed to
have many of the features of a full game in prototype form so that
students can use code fragments from it as a foundation on which
to build their own enhancements. The students are graded on the
basis of a project, which is to create a sprite-based game in groups
together with art students from the concurrent game art and design
class.

SAGE brings this experience to a fully 3D game engine, based
on an educational pedagogy that has a proven track record. SAGE
includes a sample game, Ned’s Turkey Farm 3D. The code con-
sists of a sequence of game demos, each showcasing a new feature.
The feature is demonstrated in rudimentary form, leaving room for
students to enhance it. The trick is getting it complex enough to
convey the fundamental principles, yet simple enough for students
to understand. SAGE has Doxygen generated documentation, and
approximately 200 pages of tutorials.

SAGE is developed in C++, uses DirectX 9.0, and is accompa-
nied by Visual Studio project files. It is released under a BSD open
source license, and is available on the first author’s website and in

Figure 1: Screen shot of Ned’s Turkey Farm.

the Microsoft Developer Network Academic Alliance Curriculum
Repository.

SAGE is organized as follows. The following description applies
to Demo 6, the complete fully-featured project. The top-level folder
contains two subfolders, Ned3D containing game-specific code, and
SAGE containing engine code. The Ned3D folder consists mainly of
game-specific classes derived from the basic SAGE classes, which
we will not describe further here. The SAGE folder contains two
subfolders, SAGE Resources containing resources for the console
and effects files for the pixel shaders, and the Source folder con-
taining SAGE source code.
SAGE\Source contains the following subfolders.

• Common: Low-level code, which will be described in more
detail below.

• Console: The game console.
• DerivedCameras: A free camera and a tether camera.
• DerivedModels: An animated model using animation frames

and linear interpolation, and an articulated model.
• DirectoryManager: A directory manager, which manages

the organization of resources in subfolders.
• Game: The GameBase class, which contains game logic code.
• Generators: A name generator and an identifier manager.
• Graphics: Graphics related code, including vertex buffers,

index buffers, and effects.
• Input: Input using DirectInput.
• Objects: Game objects and the object manager.
• Particle: The particle engine.
• Resource: The resource manager.
• Sound: The sound manager.
• Terrain: The terrain code, including height map and LOD.
• TinyXML: TinyXML code.
• Water: Code for water animation, including use of the re-

flection pixel shader.
• WindowsWrapper: An abstraction layer for Microsoft Win-

dows specific code.

The Common folder is of particular interest, since it contains the
low-level code for SAGE. SAGE is based on the freely available
low-level code from Dunn and Parberry [3]. Common includes the
following utilities:

• AABB3.cpp, AABB3.h: Axially aligned bounding boxes.
• Bitmap.cpp, Bitmap.h: Bitmap image reader.



Module Code
Common framework 13,729
SAGE 13,469
tinyXML 4,883
Ned specific 2,750

Total: 34,831

Table 1: Number of lines of code in SAGE.

• CommonStuff.h, CommonStuff.cpp: Common stuff that
doesnt belong elsewhere.

• EditTriMesh.cpp, EditTriMesh.h: Editable triangle mesh
class.

• EulerAngles.cpp, EulerAngles.h: Euler angle class.
• MathUtil.cpp, MathUtil.h: Basic math utilities.
• Matrix4x3.cpp, Matrix4x3.h: Homogenous transforma-

tion matrix code.
• Model.cpp, Model.h: Simple class for a 3D model.
• Quaternion.cpp, Quaternion.h: Quaternion class.
• Renderer.cpp, Renderer.h: Rendering engine (modified

somewhat from its original form in [3]).
• RotationMatrix.cpp, RotationMatrix.h: Rotation ma-

trix class
• TriMesh.cpp, TriMesh.h: Triangle mesh class.
• Vector2.h, vector3.h: vector class.
• WinMain.cpp, winmain.h: Windows dependent code.

The following low-level code was added to Common:

• camera.cpp, camera.h: Base camera class, from which the
free camera and the tether camera are derived.

• fontcacheentry.cpp, fontcacheentry.h: Encapsulates
the Direct3D font class.

• plane.cpp, plane.h: Math plane class.
• random.cpp, random.h: Pseudorandom number generator.
• rectangle.h: Rectangle class.
• texturecache.cpp, texturecache.h: Texture cache class.

Phase 1 of SAGE consists of approximately 35,000 lines of C++
code (including header files, code, and comments). The code is dis-
tributed into four parts, the Common framework (described above),
SAGE code, tinyXML, and code specific to the sample game, Ned’s
Turkey Farm 3D. The number of lines of code in each of these mod-
ules is given in Table 1. The code architecture is described in Fig-
ure 2, with the foundation being code from Microsoft DirectX and
the Windows API, the Common framework being layered on top of
that, supporting the SAGE engine, with code specific to the partic-
ular game supported by SAGE layered on top of that.

4. SAGE DEMOS
SAGE consists of seven incremental demos, as follows:

• Demo 0: Model importation and display
• Demo 1: Terrain input and rendering
• Demo 2: Shaders using HLSL
• Demo 3: Game engine architecture
• Demo 4: Collision detection
• Demo 5: Particle engine
• Demo 6: 3D sound

4.1 Demo 0
Demo 0 demonstrates the code for reading and displaying a model.

The code for Demo 0 shows the programmers how to import a

Figure 2: SAGE architecture.

model, render it, and perform simple operations such as rotation
and camera motion under user control. In addition, the executable
is a useful tool for artists and programmers to check for correct
export of models, which can be created using a 3D modeling tool
such as Maya or 3D Studio Max (see Figure 3).

Each modeling program has a proprietary file format that changes
with each version, the updating of which can cause previously used
models to become unusable. Each has facilities for plug-ins to ex-
port to a different file format. Some file formats are text, some are
binary. Direct3D has a native file format (.X). Other popular file
formats exist, eg. Quake II, Quake III models. Managing the input
of art assets is one of the biggest startup hurdles in making a game
demo. File format converters exist, but our experience with them
has in general been less than positive, often resulting in the intro-
duction of degenerate triangles, sliver triangles, missing triangles,
detached triangles, and the mangling of origin, axes, normals, and
scale.

To help avoid these problems, SAGE uses the S3D format from
[3], and includes an S3D plug-in for Maya. S3D is a simple text
format that enables the programmer to view the model data directly
in a text editor to check for simple errors.

Figure 3: Demo 0 showing the plane model.

4.2 Demo 1
Demo 1 covers terrain input and rendering. It reads a height map



from an image file and renders an island surrounded by a small
finite area of ocean (see Figure 4). Simple grid-based level of detail
is provided. A free camera can be used to explore the terrain. A
simple console allows the user to modify game properties easily.

Figure 4: Demo 1 showing ocean and island.

4.3 Demo 2
Demo 2 covers shaders using HLSL. Shaders are provided for

texture blending (demonstrated on textures that change with terrain
height), and for reflections in water (see Figure 5). A triangle of wa-
ter that moves with the camera gives the illusion of ocean extend-
ing to infinity. We particularly avoided the temptation to create a
large number of shaders, preferring to leave that for students. Since
shaders are an intricate subject the shader tutorial is the longest of
our tutorials, consisting of approximately 50 pages.

Figure 5: Demo 2 showing terrain reflections and texture
blending.

4.4 Demo 3
Demo 3 covers game engine architecture, including objects, an

object manager, a tether camera, and DirectInput. Types of objects
supported include rigid objects, articulated objects, and animated
objects. Articulated objects consist of separate hierarchically orga-
nized parts that may be moved or rotated independently, such as the
propellor on the airplane and the blades on the windmill in Ned’s
Turkey Farm 3D. Animated objects consist of key frames created by

the artist as a set of rigid objects. The SAGE animated object pro-
vides in-betweening using linear interpolation. Ned’s Turkey Farm
3D has crows implemented as animated objects.

4.5 Demo 4
Demo 4 covers collision detection using axially aligned bound-

ing boxes (AABBs). Collision of objects with terrain, objects with
objects, bullets with objects are detected. Object-terrain collision
is implemented by interpolating terrain height within a triangle,
object-object collision is implemented using AABB-AABB inter-
section, and bullet-object collision is implemented using ray-AABB
collision detection. In a real game, AABB collision detection would
be only the first or primary level of collision detection, designed to
quickly eliminate noncolliding objects. Subsequent levels of col-
lision detection, including bounding boxes and bounding spheres
at the secondary level, and triangle-triangle collision detection as
the tertiary level, are left as possible projects for the student. For
educational purposes, SAGE will render AABBs in real time for
classroom demonstrations (see Figure 6).

Figure 6: Demo 4 showing AABBs.

4.6 Demo 5
Demo 5 covers particle engines and provides a general purpose

particle engine that is used in Ned’s Turkey Farm 3D for explosions,
clouds of feathers (see Figure 7), smoke, gunfire flash, and dust
raised by a bullet hitting the terrain.

4.7 Demo 6
Demo 6 covers stereo 3D sound using DirectSound.

5. SAGE IN THE CLASSROOM
SAGE was used for the first time in the classroom in Spring 2006

in the first author’s CSCE 4220 (Advanced Game Programming)
class while the code and tutorials were still under development. The
resulting student games were of a higher quality than in previous
years, and included the following:

• Duck Hunt: A medieval first-person shooter in which the
played floats across a lagoon at twilight in a canoe, shoot-
ing flaming arrows at ducks.

• Sink This: A third-person submarine game in which the player
attempts to torpedo other submarines.

• Fury Mallard: A third-person shooter in which a duck at-
tempts to kill men in black suits.



Figure 7: Demo 5 showing cloud of feathers created using par-
ticle engine.

• Ghost Hunter: A third-person shooter in which the player
attempts to kill zombies.

• Galactic Battlefield: A third-person space shooter.
• Great Space Race: A third person space racing game where

the player must navigate between portals against the clock.
• VertiGo: A 3D puzzle game in which the player attempts to

navigate a marble through a 3D array of cubes.

6. ON DIRECTX AND VISUAL C++
The authors of this paper have attracted a substantial amount

of criticism from academics over their choice of DirectX for the
graphics API and Visual C++ for the compiler supported in this
project, over OpenGL and g++ respectively. In response, the au-
thors wish to make the following observations:

1. The DirectX SDK (Software Developer’s Kit) can be down-
loaded and used free of charge. Visual Studio Express can be
downloaded and used free of charge, which with the addition
of the Windows Platform SDK (also available for free) and
the DirectX SDK can be used for game development under
Windows.

2. DirectX is updated every two calendar months. This means
that bug fixes are applied quickly. Unlike OpenGL, there is
little or no trouble supporting available video cards. A major
version of DirectX is released regularly (DirectX 10 will be
available within a year), which ensures that the API keeps up
with the latest in graphics technology.

3. We believe that students benefit from using in class the same
tools and techniques used by a substantial fraction of the
game industry.

4. We strongly believe that students should be exposed to as
many different compilers and APIs as possible during their
academic tenure. Our students are already exposed to open
source software including g++ and OpenGL in other Com-
puter Science classes. DirectX and Visual Studio add to this
experience, and are in no way intended to supplant it.

7. CONCLUSION
SAGE Phase 1 was completed in June 2006, and can be down-

loaded from http://larc.csci.unt.edu/sage. SAGE is funded
by a grant from Microsoft Research.

8. REFERENCES
[1] J. C. Adams. Chance-It: An object-oriented capstone project

for CS-1. In Proceedings of the 29th SIGCSE Technical
Symposium on Computer Science Education, pages 10–14.
ACM Press, 1998.

[2] K. Becker. Teaching with games: The minesweeper and
asteroids experience. The Journal of Computing in Small
Colleges, 17(2):23–33, 2001.

[3] F. Dunn and I. Parberry. 3D Math Primer for Graphics and
Game Development. Wordware Publishing, 2002.

[4] N. Faltin. Designing courseware on algorithms for active
learning with virtual board games. In Proceedings of the 4th
Annual Conference on Innovation and Technology in
Computer Science Education, pages 135–138. ACM Press,
1999.

[5] T. J. Feldman and J. D. Zelenski. The quest for excellence in
designing CS1/CS2 assignments. In Proceedings of the 27th
SIGCSE Technical Symposium on Computer Science
Education, pages 319–323. ACM Press, 1996.

[6] IGDA. IGDA Curriculum Framework. Report Version 2.3
Beta, International Game Developer’s Association, 2003.

[7] R. M. Jones. Design and implementation of computer games:
A capstone course for undergraduate computer science
education. In Proceedings of the 31st SIGCSE Technical
Symposium on Computer Science Education, pages 260–264.
ACM Press, 2000.

[8] R. Moser. A fantasy adventure game as a learning
environment: Why learning to program is so difficult and
what can be done about it. In Proceedings of the 2nd
Conference on Integrating Technology into Computer
Science Education, pages 114–116. ACM Press, 1997.

[9] I. Parberry. Learn Computer Game Programming with
DirectX 7.0. Wordware Publishing, 2000.

[10] I. Parberry. Introduction to Computer Game Programming
with DirectX 8.0. Wordware Publishing, 2001.

[11] I. Parberry, M. Kazemzadeh, and T. Roden. The art and
science of game programming. In Proceedings of the 2006
ACM Technical Symposium on Computer Science Education.
ACM Press, 2006.

[12] I. Parberry, T. Roden, and M. Kazemzadeh. Experience with
an industry-driven capstone course on game programming.
In Proceedings of the 2005 ACM Technical Symposium on
Computer Science Education, pages 91–95. ACM Press,
2005.

[13] G. Sindre, S. Line, and O. V. Valvåg. Positive experiences
with an open project assignment in an introductory
programming course. In Proceedings of the 25th
International Conference on Software Engineering, pages
608–613. ACM Press, 2003.


