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Abstract—We present a novel application of economics
to the problem of determining prices for goods and
services within computer role playing games, particu-
larly those with persistent worlds. These games typically
determine prices a priori, and leave them fixed for
the game’s duration. Unlike the real world, games
are judged by the amount of interest they generate
within players, and we believe that allowing prices to be
changed in response to player actions adds interesting
gameplay elements. The field of economics provides
a rich body of literature discussing how prices may
be determined, and we have adapted these ideas into
an economic model suitable for use with role playing
games. Our price update algorithms provide interesting
behaviour, while preserving stability under a range of
conditions. Our experiments simulate daily trading over
5 year intervals in order to produce evidence of short-
term and long-term behavior. Our results indicate that
the novel economic model we present is sufficiently
stable, resilient, and consistent with behaviors of real
world economies to merit implementation in role playing
games.
Keywords: Economics, Autonomous Trading Agents,
Role-Playing Games, Machine Learning, Agent Intel-
ligence.

I. INTRODUCTION

While role playing games such as Oblivion, Fall-
out, Everquest, and World of Warcraft allow play-
ers to trade goods and services with computer
controlled non-player characters (NPCs), acceptable
prices in these games have been selected a priori by
game designers and typically remain fixed throughout
the game. Game economies differ from real world
economies in that interesting behavior is more de-
sirable than accurate modeling, and static prices do
not seem as interesting as those that change as the
result of game events. Little work has been done to
apply traditional economics to role playing games,
therefore we present a price update system, grounded
in traditional economics, that may be used in such
games. In particular we describe the algorithms and
the parameters in sufficient detail for the reader to
duplicate our work.

One of the drawbacks of such a static economy
is that nothing changes, and in particular the player
is unable to cause changes to occur. Under a static
economy, vendor preferences do not change and as a
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result one sees situations where vendors have a seem-
ingly infinite supply and demand for commodities. In
a dynamic economy trades fulfill needs, leading to
the adoption of new preferences, and new behaviors.
In particular we expect traders to buy only those
commodities that are useful to them, and if they are
unable to trade profitably to go out of business and
find another line of work.

A game economy consists of a set of players and
NPC agents that periodically trade with each other.
These agents take on the role of vendors, as any of
these agents could at a particular point in time offer
to buy or sell a commodity or service from any other
trader. This set will be referred to as a market, and
the participants will be known as traders. Offers to
buy a good or service will be referred to as bids, and
offers to sell a good or service will be known as asks.

While the most general form of an economy in-
volves the trade of both goods and services, we choose
to simplify this model without loss of generality by
considering all trades to involve only goods, referred
to as commodities. We are able to do this because a
service can be mapped to a tradable token such that
the token may later be exchanged for the performance
of the service. In the real world we see this same type
of conversion used with postage stamps and gift cards
for pure services such as haircuts.

In addition to the determination of prices, supply,
and demand, an economic system will determine the
allocation of resources. We consider both commodi-
ties and the NPC traders themselves to be resources,
the latter because the market is able to generate wealth
through them. Each NPC trader may be allocated or
assigned one of several roles that govern its behav-
ior, and we will see later that if the market is in
equilibrium the allocation is Pareto-optimal (meaning
that no trader may improve its position by modifying
an action without making another trader worse off,
see Pareto [1]). This is a useful observation since
it gives us the ability to determine a reasonable
distribution of roles within a community. We are thus
able to determine the exact number of agents for
each role that may be supported given current market
conditions, and also to determine when an agent is no
longer contributing to the economy.

Given an allocation of NPCs to various roles within
the game, we indirectly determine what commodities
will be purchased or sold. Supply and demand de-
termine what roles are profitable, and the allocation
of NPCs to these roles determines future supply and
demand. Thus the simulated economy is a feedback
loop, ideally with the behavior of all traders being
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interrelated.
In evaluating our experimental results, we consider

long-standing works in economics by Adam Smith
[2] and Vernon Smith [3], [4] and find the behaviors
of our model to be sufficiently consistent with classic
economic theory to confirm the usefulness of our
approach. We have also studied the price update
behavior of over 1 billion simulated economies, and
are satisfied that the variability and consistency of our
results is sufficiently interesting to appeal to game
players.

We will demonstrate an economic system with the
following properties:
• It determines internally consistent prices for a

variety of commodities.
• It adapts to external perturbations and shocks.
• It determines allocations of agents to roles.
• It is not dependent on any one set of game rules.
• It requires little memory or computation per

transaction.
The goal of a game economy is to provide the

player with an interesting experience that changes
over time, and one in which they feel they have
some measure of influence. Our work differs from
traditional computational economics by stressing in-
teresting behavior at the expense of realism. As with
advances in areas such as computer graphics, we note
that players are willing to suspend their disbelief
if they enjoy the game experience. We show how
to implement a system that can provide interesting
reactive behavior, is easily added to games, and has
low resource requirements. This type of economic be-
havior is lacking in most current role playing games,
and it is our belief that future games would benefit
from a richer set of economic behaviors.

The remainder of this paper is divided into nine
sections. In section II we discuss background work on
related topics. In section III we present our economic
system. In section IV we discuss our experimental
procedure, including details on the simulator used to
evaluate the system. In section V we discuss agent
replacement and the allocation of agents to roles.
In section VI we describe a representative ruleset,
and in section VII we discuss the use of randomly
generated rulesets. Section VIII presents the results of
these experiments along with an analysis. Finally in
section IX we summarize our conclusions and discuss
areas suitable for further study.

II. RELATED WORK

Researchers at Iowa State University have done
a lot of work in the area of agent-based computa-
tional economics, and this has drawn our attention,
particularly the price resolution technique found in
Nicolaisen, Petrov, and Tesfatsion [5]. Their work
tends to focus more in qualitative areas, such as
learning relationships between factors in a market,
while we are concerned primarily with quantitative
results: what is a good price for a commodity at
this point in time? Steiglitz [6] has also performed

agent-based simulations, however based on inspection
of the source code we feel that our agents behave
more rationally (for example, their agents appear to
purchase as much of a commodity as they can afford
without regard to the price or the agent’s need).

The TAC-SCM (Trading Agent Competition - Sup-
ply Chain Management) competition has been ran
annually since 2003, and produced many papers in the
area of supply-chain management (see, for example,
[7], [8], [9], [10]). In this competition, agents buy
and sell commodities and produce products for resale.
They attempt to predict changes in prices, and operate
in a profitable manner. While supply-chain manage-
ment is a substantially different problem, some of the
techniques used by these simulations are of interest
to us.

Roth and Erev [11] used reinforcement learning
(RL) to learn prices in a simulated economy. In
particular they used the acceptance or rejection of
offers to provide reinforcement of a trading agent’s
pricing policy. We considered this approach, but were
concerned that the amount of state we would need to
consider would make policy convergence impractical.
Flores and Garrido [12] similarly used RL, and we
experimented with their technique of linearly interpo-
lating prices using weights on the low and high end
of the price range.

One advantage of reinforcement learning is the
ability to update policies in an environment where
agents do not know their current state. Value-based
approaches like Q-learning or temporal difference
(TD) learning do not work well in environments with
hidden state, as agents need to know the current state
in order to select a corresponding action. However,
one is able to create an equivalence set of states based
on observations of the system, and estimate which
set likely contains the current state. Dahl’s work with
poker [13] shows that RL can work with hidden state,
however for this problem the current visible state
allows one to know the exact trajectory through action
space that has been taken so far.

Price determination for a set of commodities is a
significant problem, and a variety of techniques have
been used with other problems. Several TAC-SCM
entrants (for example, [7], [14], [15]) attempted to
predict winning bids. The Botticelli trader estimated
the probability of filling orders, and adjusted offer
prices until the expected trade volume matched its
ability to fill them. The probabilities are updated
based on trading experience, which makes price a
function of market history. Many more factors could
go into pricing (utility, pricing trends, market supply
and demand). There is also the question of whether
probability is a linear function. Within a small range,
linear approximations are adequate, but with larger
uncertainties a nonlinear update may be more appro-
priate.

Pardoe and Stone [14] used a Bayes classifier to
estimate the probability of an offer being accepted,
and trained their classifier using data from prior TAC
scenarios. In our case, the state of other agents is
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not known, limiting our ability to estimate prices.
We chose instead to base offers on each agent’s
belief in the true price of a commodity, and not
consider whether other agents might agree. We chose
this approach to more closely model the imperfect
information real traders have, and in turn we hope
this leads to more realistic results.

Shapire [15] modeled price changes as a con-
ditional density estimation problem. A price range
was discretized into a set of bins, and a probability
distribution was created over this set. This technique
also modeled future prices as a function of historical
prices, which works well if there are no other factors
that might affect prices.

Wellman et al. [16] used a novel approach by esti-
mating future demand for a commodity and adjusting
prices in advance of the market.

Ketter [17] inferred market regimes (conditions
such as oversupply of a commodity) based on the
results of attempted trades. Gaussian Mixture Models
(GMMs) were fitted to historical price data, and used
as classifiers. We did not require these types of pre-
dictions, since our problem was defined as allowing
agents access to market statistics (for resolved offers),
or market price history. Ketter’s system modeled price
as a function of demand (similar to Wellman) and
estimated trade volume as being similar to previous
rounds.

Studies have been made of the economies of vari-
ous massively multiplayer online role-playing games
(MMORPG) by Simpson [18] and Castronova [19].
While these do not tell us how to simulate game
economies, we see that game economies do behave
similarly to real-world economies.

Meadows [20] developed models and a simulation
to study social systems, however one could argue that
these were economic models since they addressed
resource allocation, and growth. This is also an excel-
lent overview of model creation and simulation, we
note in particular how one must describe the type of
information a model is intended to produce. Following
Meadows’ categorization, our model provides projec-
tions of dynamic behavior modes. We omit the term
“imprecise” as the prices reported represent actual
trades in the simulation, and would presumably be
actual NPC offer prices when used in a game.

III. AN ECONOMIC SYSTEM

A simulated economic system serves four ma-
jor functions as shown in Figure 1. In addition to
determining the prices of commodities it also de-
termines order quantities (supply and demand for
each commodity), the production and consumption
of commodities (indirectly related to supply and de-
mand), and an allocation of commodities and roles
to participating agents. This mirrors the properties of
real economic systems, in particular the coupling of
price with supply and demand as discussed by Adam
Smith [2].

Each agent maintains a set of price beliefs for each
commodity it is able to buy or sell. These price beliefs

are represented as an upper and lower price bound,
with the agent believing the price to be somewhere
in this interval. Any time the agent needs to make a
price estimation (for example during offer creation),
it will select a uniformly random value in this in-
terval. The outcome of a trade will provide either
positive or negative reinforcement to this belief. Pos-
itive reinforcement will result in the agent shrinking
this interval around the mean, negative reinforcement
may result in the interval increasing about the mean
and possibly being translated to a different mean. A
designer interested in creating an economic system
would need to decide when these updates occur, and
the magnitude of the changes.

Periodically agents will need to submit trade offers
to the clearing house in order to buy or sell com-
modities. When an agent wishes to create an offer,
it will need to determine the commodity to trade,
a fair price, and the quantity of the commodity to
trade. A designer may choose to have agents buy
only commodities they use for production and sell
commodities they produce. In this case, an agent
would create bids when the inventory of needed
commodities drops below some threshold, and create
asks anytime it has inventory to sell. The CREATE BID
routine creates an offer to buy at most limit units of
Commodity, and CREATE ASK creates an offer to
sell at least limit units of Commodity.

CREATE BID(Commodity, limit)

1 bid-price = PRICEOF (Commodity)
2 ideal = DET-PURCHASE-QUANTITY(Commodity)
3 quantity-to-buy = Min(ideal, limit)

CREATE ASK(Commodity, limit)

1 bid-price = PRICEOF (Commodity)
2 ideal = DET-SALE-QUANTITY(Commodity)
3 quantity-to-sell = Max(ideal, limit)

The determination of offer quantities is based on an
agent’s need, the inventory on hand, and the observed
market price for that commodity. An agent might
determine that it has no need to trade in a particular
commodity, or that a need is present but current
market prices are unfavorable and trades should be
avoided. If an agent believes that a commodity is
either overpriced or underpriced, it will adjust the
quantity in its order depending on whether the agent
is buying or selling. The quantity is scaled based on
the location of the current market price within the
trading range that the agent has observed. Agents that
trade more frequently will have observed more trades,
and will therefore have a better idea of the trading
range. Agents that trade infrequently are more likely
to make mistakes in pricing, however the resolution of
these trades will cause the price history to be updated
and the agent will improve its performance in future
trades.

While there are likely many different means of de-
termining trade quantity, we have had success basing
this number on how far the agent’s price belief is
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Fig. 1. Responsibilities of an economic system.

from the observed market average. This introduces
an important but subtle distinction, as prices may
be expressed in two different forms. A historical
average price represents successful trades that have
occurred in the past. Agents should be aware that
past performance is no guarantee of future results, and
should therefore trust their own beliefs more than the
historical average. However, agents should question
their belief if these values diverge and their offers are
being rejected.

DET-SALE-QUANTITY(Commodity)
1 mean = historical mean price of Commodity
2 favorability = position of mean

within observed trading range
3 amount to sell = favorability *

excess inventory of Commodity
4 return amount to sell

DET-PURCHASE-QUANTITY(Commodity)
1 mean = historical mean price of Commodity
2 favorability = max price - position of mean

within observed trading range
3 amount to sell = favorability *

available inventory space
4 return amount to sell

An economic model may be used as a tool for al-
locating resources, determining trade volumes, or es-
timating commodity prices. These factors may be ex-
pressed as a set of coupled functions of the other fac-
tors. In general, supply and demand determine price,
and price determines supply and demand (Smith [2]).
For example, in an economy where wheat is sold, the
amount of wheat traded on the market is a function
of the bid and ask prices, and the quantity traders are
willing to trade at these prices.

The amount of each commodity that is produced
and consumed is determined by having each agent
PERFORM-PRODUCTION. In the most general form
the agent will attempt to transform one basket of
commodities into a second basket of commodities.
The commodities that are consumed represent the
raw materials used up during production, and the
commodities that are produced represent the products
of the agent’s labor. Production may therefore reduce

an agent’s inventory of raw materials, and increase
its inventory of products. As a result of an inventory
reduction, the agent may later find that its inventory
is too low and create bids in an attempt to replace
this inventory. This creates demand in the market,
and the agent competes against other buyers for
whatever supply is available on the market. Similarly,
any increase in inventory may prompt the agent to
create asks in an attempt to sell excess inventory. This
creates supply in the market, and the agent competes
against other sellers for whatever demand is available.
There is therefore a strong relationship between the
results of PERFORM-PRODUCTION and the supply
and demand for various commodities in the market.
This in turn implies a strong relationship with future
prices for these commodities, as an increase in supply
will tend to drive prices downwards and an increase
in demand will tend to drive prices upwards.

It is important to note that there is no single correct
price for a commodity, but rather a price that is accept-
able to the community at a particular point in time.
The individual trade prices may not be an optimum
price, nor indicate a market equilibrium, as noted by
Vernon Smith [3]. Traders will sometimes trade at
non-optimal prices, and that they will learn from their
experiences and adjust their future behavior, or they
will fail and be removed from the market. While the
actions of individuals are not optimal, they are usually
rational and reflect the self-interest of each individual.
These individuals tend to adjust their behaviors until
they collectively behave in a Pareto-efficient manner.

An economic system also serves to allocate re-
sources within the market. We have seen how agents
compete to buy and sell commodities, and as a suc-
cessful offer results in a trade it will also result in an
allocation of the commodity traded to the buyer. A
buyer who offers a higher price will have their offers
accepted before lower priced offers, and therefore the
market can be seen to allocate resources first to those
who will pay more for them.

Each trading agent is assigned a particular role or
profession when it is created, and maintains this role
during its lifetime. This role determines the produc-
tion rules that an agent will use when PERFORM-
PRODUCTION is called, and subsequently the com-
modities that the agent will trade in. In the most
general case, agents would not have these restrictions,
but as we are also interested in determining a stable
distribution of agent types, requiring agents to adhere
to a limited set of rules allows us to make statements
about the ability of a particular ruleset to support a
given number of agents.

As the simulation progresses, successful agents will
buy raw materials and sell their products. Unsuccess-
ful agents will fail in their attempts to buy or sell, and
therefore generate no cash flow. We have found that it
is helpful to assess some fixed overhead, either in the
form of required consumption, or in taxes, to pressure
each agent to be productive. Under such a system
unsuccessful agents will eventually go bankrupt as
their money supply is exhausted, while successful
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agents will earn a profit above their expenses. When
an agent goes bankrupt we choose to replace the agent
with one of a profitable type, thereby adjusting the
distribution of roles within the population of agents.
This represents a market allocation of agents to roles.

A. Price Belief Updates

Agents will update their price beliefs in response
to their offers being accepted or rejected, therefore
agents that make offers gain more information on the
market. These price beliefs are represented by a lower
and upper bound for a price interval, with the agent
believing the true price of a commodity lies within
this interval. Agents are able to expand, contract and
translate this interval as desired. An agent’s price
beliefs are updated after each of the agent’s offers
has been resolved. During this resolution, the system
determines if a trade occurs, the number of units
that traded, and the trade price. The offer resolution
mechanism will be discussed in detail in the next
section.

When an agent’s offer is accepted, this is taken
as evidence that the agent’s price belief is accurate,
and when an offer is rejected the agent learns that
their price belief is inconsistent with the market. Even
in the case of an accepted offer, it is beneficial for
an agent to anticipate future price changes due to
supply/demand imbalances. The price belief update
performed will depend on whether the agent has
generated a bid or an ask. The update procedures are
described by PRICE-UPDATE-FROM-BID and PRICE-
UPDATE-FROM-ASK. These updates take into ac-
count partially filled orders, the difference between
the offer price and the historical market average, and
the current supply and demand for the commodity
being traded.

When an offer is accepted, the may only need to
take supply and demand into account for a minor
change. When an offer is rejected, the agent has a
more difficult choice. The agent may have offered
far from the mean, causing its offer to be placed far
enough down in the offer book that no matching offer
could be found, or the offer may have exceeded the
limits of the matched agents. No seller will agree to
sell a product below the cost to produce that product,
nor will any agent agree to pay significantly above the
observed trading range. In this case the rejected agent
will want to reevaluate its price belief, translating its
price range towards the mean and increasing the size
of the interval to reflect its lack of confidence in the
belief.

Agents that are very low on inventory and have
had their bid rejected will make a more aggressive
adjustment of their price belief in an attempt to
leapfrog their competitors.

If none of these special situations exist, a rejected
agent will examine the current round’s supply and
demand for the commodity and if there is a large
imbalance adjust their prices in anticipation of price
adjustments by potential trading partners.

PRICE-UPDATE-FROM-BID(Commodity)

1 if at least 50% of offer filled
2 Move price belief limits inward by

1/10 of upper limit
3 else
4 Increase upper belief limit by

1/10 of current value
5 if (less than full market share and

inventory < 1/4 capacity)
6 displacement = price diff from mean/mean
7 Translate belief range upwards by displacement
8 elseif offer price > trade price
9 Translate belief range downwards by 110% of overbid

10 elseif supply > demand and offer > historical mean price
11 Translate belief range downwards by 110% of overbid
12 elseif demand > supply
13 Translate belief range upwards by

1/5 historical mean price
14 else
15 Translate belief range downwards by

1/5 historical mean price

PRICE-UPDATE-FROM-ASK(Commodity)
1 weight = percent of order unfilled
2 displacement = weight * price mean
3 if No units sold
4 Translate believe range downwards by

1/6 displacement
5 elseif Have less than 75% of market share
6 Translate believe range downwards

by 1/7 displacement
7 elseif offer price < trade price
8 Translate belief range upwards by 120% of

weight * overbid
9 elseif demand > supply

10 Translate belief range upwards by 1/5
historical mean price

11 else
12 Translate belief range downwards by 1/5

historical mean price

IV. EXPERIMENTAL PROCEDURE

Experiments were performed for both the general
example and a large number of examples using ran-
dom production rules. We created simulators that
allow computer controlled trading agents to buy, sell,
produce, and consume commodities. These agents
were assigned roles so that an equal number of agents
were initially in each role. Between 1000 and 10000
rounds of simulation were performed, during which
time each agent interacts with other agents either as a
buyer or a seller, and unsuccessful agents are replaced
by new agents in different roles.

The individual trading agents were designed to
provide realistic behavior by maintaining unique state
that is updated based on their individual experiences.
We required agents to be partitioned into classes based
on role to take into account for the human tendency
to specialize labor. In the real world an individual
typically holds one job at a time, although the individ-
ual may change jobs over time. We restricted agents
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from trading in commodities that they did not require
for production, nor produce. This is not a significant
restriction as a rule could be added that converted a
commodity into itself, making an agent technically
a producer without performing any real production.
For example, a rule that transforms one unit of com-
modity A into one unit of commodity A would allow
the agent to buy and sell this commodity, without
changing the amount present in the world. This rule
would allow an agent to speculate in commodity A.
An assumption that an agent will act to maximize
profits with only knowledge that it personally gained
indicates that agents will act in a rational and fair
manner.

The following assumptions are made regarding the
trading agents:
• Traders are heterogeneous, having unique pric-

ing beliefs, roles, inventories, and money on
hand.

• Traders follow role-specific rules for consuming
and producing commodities.

• Traders use an arbitrary unit of currency as a
standard for pricing commodities.

• Traders only trade in commodities that they
personally produce or consume.

• Traders are allowed to maintain a limited in-
ventory of each commodity.

• Traders act to maximize their long-term profits.
• Traders do not have perfect knowledge of the

market.
• Traders learn from personal experience.
The random number generator was assigned a

unique seed for each run. The use of random numbers
to determine prices within a confidence interval, or to
determine if an unexpected event occurs caused the
simulator to produce different results, but each similar
in the general behavior. As we will discuss in a later
section, our simulation exhibits a chaotic sensitivity
to small changes in the initial conditions.

In each round of simulation each agent performs
a production operation, generates offers to buy or
sell certain commodities, and delivers these offers to
the auction house. The central auction house collects
these offers and stores them in separate offer books
(one book for bids, one book for asks). Once all agents
have had an opportunity to enter their offers, the
auction house resolves the trades using a distributed
double auction, as described by Steiglitz, Honig, and
Cohen [6].

SIMULATION-LOOP

1 for round = 1 to number-of-rounds
2 for each trading agent
3 perform production
4 generate offers
5 resolve offers

Production can be generalized as the conversion of
one set of commodities (referred to as a basket) into
another basket of commodities. The details of how
this is performed is implementation dependent, but in

general one verifies that the necessary materials are
on hand, removes these from an agent’s inventory, and
adds the production product to the agent’s inventory.
We therefore assume that each agent maintains a
separate inventory capable of holding an arbitrary
number of each commodity. In practice a game may
place limitations on the size of this inventory.

An agent creates offers by examining all commodi-
ties that it either consumes or produces. If the agent
is running low on a commodity that it consumes,
CREATE-BID is called to create an offer to buy an
appropriate amount of this commodity. The offer is
then sent to the clearing house where it is added to
the bid book for that commodity. Similarly, if an agent
has produced some commodities that it does not need,
CREATE-ASK is called to create an offer to sell an
appropriate amount of this commodity. This offer is
sent to the clearing house and is added to the ask book
for that commodity.

Once each agent has had the opportunity to add a
set of offers to the appropriate offer books, the offer
books are shuffled to remove any bias due to the order
the agents were processed, and both books are sorted
by price. The central clearing house will then use a
double-auction to determine the resolution of each of
these offers.

We are interested in the quality of the simulations
only to the extent that it allows us to provide prices
that appear reasonable to players. So while we have
no strict need for high quality results, we sought
techniques that were fast and gave us good behavior.
Double auctions were selected both for their effi-
ciency, and their ability to approximate theoretically
predicted behaviors (see, for example, Smith [3], and
Gode and Sunder [21]). The use of these auctions in
experimental economics for the past fifty years gives
us confidence that they represent a sound technique.

In this type of auction, RESOLVE-OFFERS matches
the highest bid with the lowest ask, a trade occurs,
the offers are updated to reflect the quantity of a
commodity exchanged, and any offers with zero units
unfilled are removed from the book. This process
continues until either the bid or asks book is emptied.
The offer books are shuffled at the beginning of a
round to eliminate bias among agents with the same
offer price. Note that when this matching stops one of
the books will likely have offers remaining, and these
are reported to the issuing agent as being rejected.
During offer resolution, the minimum of the bid and
ask quantities are exchanged at the average of the bid
and ask price as discussed by Nicaolaisen et al. [5].
Inventories of each agent are adjusted by the amount
of the trade, and the amount of currency each agent
has is also adjusted.
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RESOLVE-OFFERS (Commodity)
1 Shuffle both bid and ask books for Commodity
2 Sort bid book in order of decreasing offer price
3 Sort ask book in order of increasing offer price
4 while both books are non-empty
5 buyer = the first bid in the book
6 seller = the first ask in the book
7 quantity traded =

Min(units offered by seller,
units desired by buyer)

8 clearing price =
Average ( seller’s offer price,

buyer’s offer price )
9 if quantity traded > 0

10 reduce units offered by seller by
quantity traded

11 reduce units desired by buyer by
quantity traded

12 transfer quantity traded units of
Commodity from seller to buyer

13 transfer clearing price *
quantity traded from buyer to seller

14 both seller and buyer update
their price model

15 if quantity offered by seller = 0
16 remove the first ask from the book
17 if quantity desired by buyer = 0
18 remove the first bid from the book
19 Remaining offers are rejected and the issuing

agent updates its price belief

At the end of each round, agents are notified of
the quantity of commodity traded as a result of their
offer. This notification contains market statistics for
the current round, such as trade volume, the average
price for trades, the high and the low price for the
commodity in the offer. Agents will then update their
personal price models to reflect their belief in the
true value of this commodity. Note that there is no
single true value for a commodity, but rather a set of
beliefs held by each agent that trades in a commodity.
Over time it is observed that the agents converge to a
single shared belief in a commodity’s value, although
external events (shocks) can cause the market to shift
to a new shared belief.

Although individual agents in our world maintain
no personal history, the clearing house does maintain
some historical information that is available to all
traders in the market. Agents are therefore required
to adjust their personal beliefs about the value of
a commodity based on this public information and
any information privately learned from prior offer
resolution. This public information consists of:

• The average price for each commodity within
some user-defined window.

• The average quantity of each commodity of-
fered for sale within some user-defined window.

• The average quantity of each commodity bid on
within some user-defined window.

V. AGENT REPLACEMENT

Ideally, agents in a game should change roles when
there is economic pressure to do so. If we treat these
roles as professions, we may evaluate an agent’s per-
formance by their profitability, and decide to change
jobs when the agent is no longer profitable. These
changes in roles is necessary to provide variations in
supply and demand for commodities, as commodities
high in demand will attract new agents and in turn
increase the available supply. Our experiments have
shown that the simulated markets move towards a set
of agents supportable under the current economic con-
ditions, and reallocate agents when market conditions
change. In practice, simulated market conditions are
constantly changing so the market never converges to
a stable set. This automatic reallocation of agents is a
benefit to the game designer, as it allows adjustments
in the population of NPCs without explicitly coding
for causative events. For example, an interruption in
supply for a commodity (such as timber) will affect
industries directly dependent on the commodity (ship-
builders for example) as well as indirectly (farmers
who provide food to the shipbuilders). These external
events may, depending on the magnitude and duration,
cause agents to go bankrupt.

An agent that is unable to remain profitable will
eventually go bankrupt, and be replaced with a new
agent of the currently most profitable type. This prof-
itability statistic is a moving average of profits for a
particular type of agent over some user-define number
of prior rounds, ensuring that recent performance is
evaluated. We have seen good results with windows
between 8 and 15 rounds, but a particular set of
production rules may work better with other values.
It is a reasonable assumption that a recently bankrupt
agent was not in a profession that was doing well, and
therefore this replacement strategy acts to maintain a
constant population size but varies the composition
of agent types. As a result, as long as bankruptcies
occur, the simulation will make adjustments to the
distribution of agent types. Ideally, absent of some
external disruption, there will be a point where no
future bankruptcies occur, as the market is capable of
supporting each agent indefinitely.

Our results are consistent with accepted economic
theory. Adam Smith [2] theorized that people trading
in an open market would lead to the production of
the proper quantities of commodities and the division
of labor. Our results support this belief, since agents
that are not profitable are bankrupted and replaced by
more profitable agents.

The first fundamental theorem of welfare eco-
nomics states that a market with a supply/demand
equilibrium leads to a Pareto-efficient allocation of
resources, meaning that no change to the resource
allocation can be made without making at least one
trader worse off [22]. This would suggest that when
the market is in equilibrium the allocation of agents
to roles will over time tend to an optimal value [23].
In practice no market ever moves into equilibrium,
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but instead will move into a neighborhood that is
near equilibrium and oscillate about the equilibrium
point [3].

Ohe economic system will constantly attempt to
determine a distribution of agent roles that results
in market equilibrium, however it never reaches this
goal and instead orbits around equilibria until market
conditions establish new equilibria points. At this
time, the agent distribution is seen to adjust and move
towards these new equilibria.

VI. A GENERAL EXAMPLE

Our simulation used various techniques to
exercise this economic system. The most general
form of production was to allow the simulator
to call agent-specific routines that would update
inventory. This allowed us to implement complex
production rules without restriction, while updating
the price models in a manner consistent with an
actual game. One such ruleset allowed agents
to be farmers, miners, refiners, woodcutters, or
blacksmiths. These agents produced, and consumed
food, ore, wood, metal, and tools according to the
production rules defined by FARMER-PRODUCTION,
MINER-PRODUCTION, REFINER-PRODUCTION,
WOODCUTTER-PRODUCTION, and BLACKSMITH-
PRODUCTION.

This example was created to illustrate a typical
economy, as might be found in a fantasy role playing
game. As the rules were implemented using arbitrary
code, the designer is free to create as complex a
ruleset as desired.

Due to space limitations we provide a single rep-
resentative rule for reference, an extended version of
this paper with the entire example is available from
the authors.

FARMER-PRODUCTION

1 if has-wood and has-tools
2 produce 4 units of food
3 consume 1 unit of wood
4 break tools with prob 0.1
5 elseif has-wood and has-no-tools
6 produce 2 units of food
7 consume 1 unit of wood
8 else
9 agent is fined $2 for being idle

VII. RANDOM GENERATION OF PRODUCTION
RULES

In addition to testing with the production rules
described above we have developed a second sim-
ulator that creates random production rules, in order
to demonstrate that our results are not dependent on
any single set of rules. To achieve this we expressed
the production rules in a matrix format, allowing
us to assign random values to the matrix and then
simulate a set of agents operating under these rules.
We claim that if we observe acceptable behavior from
economies using randomly generated rules, then we

have a suitably general solution that will perform well
with rules that a designer might select. We do not
claim that all rules will perform well, only that a large
set will. In particular rules that express a non-closed
economy (where agents consume a commodity that
is not produced) are not going to produce pleasing
results under any economic system.

The matrix form for production rules defines a rule
as a set of commodities that is converted into another
set under a probability distribution. For example,
the rule shown in Equation (1) allows an agent to
convert two units of Commodity1 into one unit of
Commodity4. Additionally, the agent is required to
possess one unit of Commodity3 that is consumed
10% of the time. In a simulation round, an agent is
permitted to perform production using one of these
rules. If the agent does not possess inventory listed
on the left-hand side of a rule, the production is not
allowed and the agent must consider other rules. It
is therefore possible for an agent to be unable to
perform production in a given round due to inadequate
inventory. In this situation we assess an idleness tax,
to ensure that non-productive agents were eventually
driven bankrupt. As each type of agent was allowed to
select among several rules, we ranked the production
rules in order of preference and had agents use the
first rule in their set that they were able to execute.

This use of multiple production rules for an agent-
type along with probabilities for terms in production
rules allows us to model complex behavior including
conditionals (such as, does the agent possess a tool
or catalyst represented by Commodity3 in our exam-
ple).

2 ∗ Commodity1 + Commodity3 ⇒
Commodity4 + Commodity3(p = 0.9)

(1)

Since these simulations were requiring large num-
bers of calls to the random number generator, we were
concerned that we might exceed the default random
number generator’s period and bias our results. We re-
placed this generator with a Mersenne Twister random
number generator (MT19937), which has a period of
219937 − 1.

Due to the large number of random experiments we
performed, we were unable to study all of the results.
We therefore established screening criteria to filter out
unacceptable results, with the intention of counting
the number of simulation runs that were well behaved.
We arbitrarily selected a set of desirable features for
a price graph, and then modified the filters until we
were seeing only these types of graphs. Many of these
features were based on the belief that we need to
observe regular trades for each commodity if we are
to judge the market’s overall performance. We further
wished to see that prices change over time, but wanted
some long-term stability in prices. We define stability
as the tendency of prices to return to equilibrium, as
opposed to diverging to 0 or infinity. The exact values
in the filters were therefore determined empirically
from a representitive set of price graphs. The final
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criteria used were as follows:
• Each commodity was produced by at least one

type of agent.
• Each commodity was consumed by at least one

type of agent.
• No commodity goes more than 20% of the total

number of rounds without trading.
• The average trade volume for a commodity is

greater than one unit per round.
• The variance in commodity price is between

0.025 and 7.5 times the largest trading price.
• The average change in price is between 0.02

and 0.9, the variance of this change is also
between 0.02 and 0.9.

• Fewer than 2 price inflections occur per round
on average.

• The variance in the time between price in-
flections is less than 1.2 times the number of
rounds.

We are therefore comparing both the variance in
price and the variance in the first derivative of the
price.

VIII. EXPERIMENTAL RESULTS AND
EVALUATION

When evaluating the performance of a complex
system, one realizes that combinatorial growth in
the number of possible interactions makes exhaustive
analysis intractable. In our economic simulation, how-
ever, there are a limited number of ways in which
a trader (human or agent) can affect the economy.
Buying a large quantity of a commodity can reduce
available supplies for other traders, and encourage
agents to switch production to this commodity. Selling
a large quantity of a commodity can increase supplies,
and discourage agents from producing more of this
commodity. And finally, we assume that agents have
the ability outside of the market to interfere with
supply and demand, by blockading an area or destroy-
ing resources. Our prime concern is with showing
that our economic model recovers from even extreme
behaviors, and therefore that the range of possible
trader behaviors will not destabilize the system in the
long term.

A. A Representative Ruleset
We first consider the general fantasy-RPG themed

example discussed in Section VI. We feel this ruleset
is representative of the types of rules one might use
within a game.

Figure 2 shows the behavior of a simulation over
2000 rounds. If we arbitrarily decide that each round
represents one day’s activity in game time, we present
almost 5.5 years of price data. A graph of the sup-
ply/demand ratio over time is shown in Figure 4,
and demonstrates that the economy undergoes the full
range of supply and demand imbalances. A concerted
effort by multiple players could artificially bring about
such an imbalance, but we see no long-term effects.

Figure 2 demonstrates that the economy recovers
once an imbalance is eliminated. This auto-recovery
is necessary for long-term stability, and in particular
eliminates the need for human intervention.

When looking at this long-term behavior, we ob-
serve that trading occurs within a bounded range,
suggesting that prices are orbiting a stable equilibrium
rather than diverging to either 0 or infinity. The system
is constantly attempting to move back into equilib-
rium, while it is undergoing further perturbation as
the result of trades. We consider the graph in Figure 2
to show long-term stability in prices as the system
recovers from disruptive events on its own. We also
note that prices are not precisely predictable, although
some relationships can be seen over time. A close up
of one part of the graph is shown in Figure 3. There is
a correlation between commodities that are dependent
on one another, as the prices of products move with
the price of the raw materials. For example, the price
of refined metal (shown with a dash-dot pattern) tends
to rise and fall with the price of unrefined ore (drawn
with dashes). The magnitude of the changes differs,
but the local maxima at rounds 1020, 1060, 1110,
1140, 1170 and 1200 occur in both graphs.

Paradoxically the price of refined metal in Figure 3
appears to increase before the price of refined ore
(the precursor product). It should be kept in mind
that these figures show average prices over time, and
an agent may choose to raise its offering price the
moment it experiences resistance to a price, even if the
market average does not yet reflect the belief in a price
change. While we see correlations in prices, we also
see the independent movement of prices. The prices
of ore and metal in this case are not translations of
each other, but vary within a limited range. This long-
term stability is desirable, as it shows that the system
does not undergo runaway inflation, but instead self-
corrects.

The sensibility of prices is a subjective measure-
ment, but as long as our simulated agents behave
rationally we must accept that the prices they trade at
make sense. We note in particular that as the prices
of raw materials go up, the prices of finished goods
increases with a slight delay as inventories are used
up. Allowing an agent to stockpile a certain amount
of a commodity provides a short-term buffer against
price changes, and tends to dampen price swings.
An internal consistency in prices occurs since the
economy is a closed system, and each transaction
influences future transactions. This consistency is
predicted by accepted economic theory, and to the
extent that our results agree with theory we are able
to claim that our system’s behavior makes sense.

B. Applications of Economic Theory

Proponents of General Equilibrium Theory believe
that supply and demand will equalize over time,
however our results do not support this. In particu-
lar Arrow and Debreu [24] argued in favor of this
equalization, assuming that traders in the market had
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Fig. 2. The system has stable long-term behavior, moving in and
out of equilibrium.

Fig. 3. Detail of the previous figure, showing similar behaviors
among commodities.

perfect information and responded instantly to market
changes. Their argument is intuitive when one con-
siders that an imbalance in the supply/demand ratio
should result in price changes that result in changes to
supply and demand and return the system to equilib-
rium. However in the real world Arrow and Debreu’s
constraints do not hold, nor do they hold in our
simulation. Traders create offers based on their belief
in the market price, but without knowing the beliefs
of other individuals. Traders are able to estimate the
beliefs of others based on their observations of trades
that complete, but only have perfect information on
their own trades and their own price beliefs. Traders
also do not respond instantly to market changes, as
they only update beliefs after they have tendered
an offer and seen how it was received. This delay,
coupled with the time needed for market averages to
converge following a shift in belief cause the agent

Fig. 4. Long-term supply/demand behavior, showing the system
in a variety of regimes.

to respond slowly to market changes. We believe
this is a useful property, as it prevents agents from
overreacting to short-term market changes, as well as
better reflecting how a trader in the real world would
respond.

We look to Vernon Smith [3], a pioneer in the field
of experimental economics for an explanation. Smith
explains that supply and demand can only set broad
limits on the behavior of the market, as any successful
trades remove a quantity of supply and demand from
the market and therefore alter the supply and demand
curves. In a later paper Smith [4] explains that “all
information on the economic environment is private;
far from having perfect or common information”
and “prices and allocations converge quickly to the
neighborhood of the predicted rational expectations
competitive equilibrium”. So in the ideal case sup-
ply and demand would converge to the same value,
in real experiments they will only be in the same
neighborhood. This agrees with our observations of
the supply/demand ratio over time.

In one experiment 500 heterogeneous agents were
simulated for 10000 rounds of trading, and the sup-
ply/demand ratios were graphed over time. These
ratios were not constant, but instead varies between
approximately 0.5 and 2, repeatedly crossing the line
y = 1 (representing the equivalence of supply and
demand). We conclude that the market is constantly
trying to make these values equivalent, but over-
shooting and then correcting itself. As this behavior
agrees with Smith’s observations, our confidence in
our results is further strengthened.

We have observed that agent profitability tends to
zero over time, as prices for raw materials increase to
the point where buyers refuse to bid on them. Adam
Smith [2] discusses a similar phenomenon in the
Wealth of Nations (Chapter 10, Part II) where he notes
that the landlord will raise prices until the tenant is
left with “the smallest share with which the tenant can
content himself without being a loser, and the landlord
seldom means to leave him any more”. If we look at
the average agent profit (by type) over time in Figure 6
we see profitability orbiting the zero equilibrium, the
disruption due to the external event, and the recovery
as profits again trend towards zero. While the external
event does create a significant disruption, once the
event completes the system returns to orbiting the
equilibrium. The long-term behavior of our simulated
economies therefore agrees with accepted economic
theory in this aspect.

C. Response to Extreme Stimuli

Our system is able to adapt and recover from exter-
nal perturbations and shocks. This is a useful feature
since it addresses the type of market manipulation that
players might choose to engage in. Figure 5 shows
the effect of a short term interruption in the supply of
wood. Between round 600 and round 700 woodcutters
were unable to harvest wood, simulating a forest fire
that has eliminated the resource. We see the price
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Fig. 5. An interruption in wood supply and subsequent recovery.

Fig. 6. Agent profitability by type for the forest-fire scenario,
demonstrating an orbit about the equilibrium.

of wood remain fixed during this period, as there
are no sales there will be no price updates (a price
is only established when an offer is accepted). The
prices of ore and tools begin to rise during this period
as both products use wood (to shore up mine shafts
and for tool handles) and existing wood inventories
are depleted. While wood production resumes on
round 700, prices continue to rise for another 50
rounds as the unsatisfied demand greatly exceeds the
limited supply. The prices of products that depend
even indirectly on wood increase, although there is
a delay before the market adjusts these prices. In
this case the delay is due to accumulated inventories
being drawn down, and acting as a moderating force
on prices. These prices will eventually resume their
previous pricing behavior, but there is a time lag as
inventories are depleted and agents start to believe
that wood is no longer scarce. Even a serious shock
to the economy such as the fire creates no long-term
harm, as eventually we observe the system returning
to equilibrium at approximately round 950.

One should keep in mind when looking at these
graphs that the prices are partially a function of
random chance. Tools break at random times, and
agents enter bids based on random guesses within
their price confidence interval. As a result there can
be large price fluctuations if enough of these random
events occur in a short interval. This can be a good
thing for both the designer and the player, as it means
that one may never exactly predict price behavior.
However, the overall price trends do follow patterns,
and do react to major events (such as the forest fire in
Figure 5). It should be possible for players to engage
in arbitrage if they so choose. A knowledgeable player
who becomes aware of the lack of wood could buy

up tools and ore and wait for the market prices to
increase, then sell them at a profit. Short term price
shocks are therefore not a problem as long as the
long-term behavior of the economy is consistent.

The allocation of roles to agents is an important
product of this model, as it is necessary to know
how many agents may be supported in a role. If we
consider a community with N agents and M roles, one
might need to know how to partition the N agents
into M sets such that the agents remain profitable.
This type of question comes up when we consider
adding a new NPC (the N+1th agent) to the game and
wish to know what role this NPC should take on. A
village populated entirely by woodcutters would raise
the question of how these woodcutters find food, or
where all of this wood is going. One may avoid these
situations by ensuring that all population distributions
are viable, that there is a need for each of the agents
and that each of the agent’s needs are met. We obtain
this information from the simulation at minimal cost
by observing the profitability of roles over time.

At any point in time there will be an ordering
of the M roles by profitability. The more demand
there is for a role, the more profit one will expect
for agents in this role. This is the result of high
demand driving up prices for the products of this role
faster than the materials needed by agents in this role.
Conversely agents in a role that is not in demand
will find it difficult to execute trades, yet will still
have overhead (food in this example). When a new
agent is added to the simulation, if we bias the role
selection by the profitability of the roles, we ensure
that high demand roles gain agents and low demand
roles lose agents. At any point in time the population
of agents represents a viable community, since agents
will be removed when they are no longer able to
provide for themselves. Figure 7 shows changes in the
distribution of agents by role over time, starting from
an arbitrary (and unsustainable) distribution. In this
example farmers and woodcutters are in high demand
since both provide resources needed by other agents,
so it makes sense that new agents would favor these
roles. The exact number of agents at a point in time
is a function of random events, but also of the ruleset
and ontology.

Short-term random events prevent the market’s role
allocation from reaching equilibrium; however there
are stable patterns observed. We also observe that
roles producing commodities that are high in demand
will have more agents than those producing less
needed commodities. As supply and demand change
over time, the need for certain roles changes over
time, and the market moves towards a different alloca-
tion. At each point in time, the number of agents in a
particular role approximates the number of profitable
agents under current market conditions. As a result, a
census of agents in the market allows us to determine
a reasonable distribution of agent types, and we are
therefore able to create a community of N agents and
know that the market will reallocate the roles until an
acceptable distribution is found. Furthermore we are
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Fig. 7. The distribution of agent roles over time.

able to start the simulation with an arbitrarily chosen
distribution (we initially assigned equal numbers of
agents to each role), and know that the system will
quickly reallocate these agents into more appropriate
roles.

D. Experiments with Random Economies

In addition to our experiments with the general ex-
ample, we performed a large number of experiments
using random economic rules. As discussed earlier,
we applied a filtering function to test price graph
characteristics and decide if a particular set of rules
produced acceptable results. We used UNT LARC’s
cluster of PS3 consoles to evaluate these random
economies, with the simulation performed on the Cell
processors’ SPE units. The high degree of parallelism
and the high performance of these Cell processors
allowed us to evaluate millions of distinct rule sets
in a few hours. We tested approximately 1.5 billion
random economies and found 2.7 million (0.19%)
that passed all of the filter criteria. These economies
appear to be uniformly distributed, as we observed
roughly the same fraction for multiple smaller runs
using different random number seeds. We calculated
that there were approximately 2160 distinct matrices,
and assuming that 0.19% of these have acceptable
performance we have more than 2150 economies to
choose from. Figure 8 shows two representative price
graphs, demonstrating price behavior under random
rules. Systems using random rules are less likely
to be well behaved than those a designer might
create. Based on the large number of well-behaved
random economies, we believe that the behavior of
this economic system is independent of any single
ruleset, and we are confident that a designer would
be able to create a ruleset with similar performance.

The calculations required to update the economy
can be carried out very quickly. A single 3.2GHz
SPE can perform approximately 200000 agent updates
per second, including simulator overhead such as
data logging. Most games do not have this many
NPCs, nor do they require them to be constantly
buying and selling. Only two floating point values
are required per commodity per agent, which we feel
to be particularly light. We are confident that adding
an economic simulation to a game will not add a
significant burden in terms of either processing time
or memory requirement, and as a result this technique
is feasible.

Fig. 8. Two random economies

E. Observed Chaos

Chaos is defined as sensitivity to initial conditions
affecting the outcome, and this describes behavior
seen in our simulation. We first became aware of
the issue when we observed differences in the output
when the compiler’s optimizer was turned on. Our
investigation of this phenomena concluded that even
though we used double-precision floating point in our
implementation, discretization errors were present in
our intermediate results due to the inability of the
compiler to express certain floating point values (such
as 0.1) as exact values in binary. Furthermore, the
optimizer was reordering floating point operations,
causing these discretization errors to propagate dif-
ferently than they would in an unoptimized version.

The magnitude of the sensitivity was demonstrated
by a one-time addition of 10−9 units of currency to
a single agent during a simulation. We observed that
several agents went bankrupt who would otherwise
have remained solvent. In addition, after 500 rounds
of simulation the price of certain commodities varied
by around 20% from the normal runs. This magnitude
of error is within the observed discretization error for
0.1, and can be expected to occur normally during
simulation when calculating moving averages.

This chaotic behavior is not an error, but can
be expected in an iterative simulation that employs
feedback. Our model was tested with production rules
that coupled different agent types. This means that
each type of agent produces a product needed by at
least one other type of agent, and uses a product
produced by at least one other type of agent. As
a result of this coupling, any perturbation of one
agent will propagate to other agents. Furthermore, an
amplification effect occurs as a result of continuous
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errors becoming discrete errors. Say that one agent
is saving money to buy a needed tool, and in one
case the agent comes within ε of being able to afford
the tool before going bankrupt. In another run, due to
chaotic effects, this same agent may gain an extra ε of
currency and buy the tool. And as a result of owning
this tool, the agent may become profitable and remain
in business. As a result, this agent continues to have
an impact on the economy, buying and selling goods
and affecting prices on these goods. A small error
of ε has a much larger affect, once it results in a
discrete change (the number of tools owned by the
agent changing from 0 to 1).

We believe that this behavior is desirable, since it
makes the impact of player actions harder to predict.
It is important to note that the changes to the econ-
omy outside of the ε error are justifiable under the
production rules.

Oxley and George [25] note that economics can be
chaotic. Rosser [26] also gives a good explanation of
economics as a complex dynamic system. Our model
does indeed have the following characteristics found
in chaotic complex systems (see Arthur, Durlauf, and
Lane [27]):
• Disperse interaction: Agents interact with a

subset of other agents
• No global controller: No single agent may con-

trol the market
• Tangled interactions: The production models

are usually coupled.
• Continual adaptation: Agents constantly update

their beliefs about prices
• Perpetual novelty: In a chaotic phase, markets

are created and destroyed as the agent mix
stabilizes. Also until agents’ beliefs in commod-
ity prices converge commodities will frequently
trade at prices that contradict these beliefs.

• Out of equilibrium dynamics: Prices may not
move to an attractor, but may orbit perpetually.

IX. CONCLUSION AND FUTURE WORK

We have presented a technique for simulating a
game economy, resulting in changing prices, trade
volumes, and a distribution of roles within the econ-
omy. We have shown that our economic system pro-
duces reasonable prices for arbitrary sets of com-
modities and agent types, and the experiments with
random economies demonstrates that performance is
independent of any particular ontology. We have
demonstrated that our system adapts to and recovers
from external shocks, and that the system returns
to the neighborhood of market equilibrium after the
shock has abated. We also saw how the simulation
was able to assign roles to individual agents, and
modify the distribution of roles as changes in market
conditions warranted. Finally, our analysis of the time
and memory requirements for this simulation suggests
that this system is feasible for use in computer games,
where machine resources are often at a premium.

Game economic models do not have the same
requirements as traditional economic models, and

should therefore be evaluated differently. Assessing
the accuracy of our model is difficult, as we are not
able to compare prices and trade volumes to those
from an actual economy. However, accuracy is less
important than demonstrating interesting behavior.
To be interesting, we believe that prices should be
reactive, consistent with events, and have enough
variability that players may observe changes over
time.

The behavior of prices and agent roles appears to
be of acceptable quality, as they demonstrate con-
stant small magnitude changes and yet respond to
significant events in the market with larger changes.
As prices are a function of supply and demand, any
event that alters either of these values will result in a
corresponding change to prices. If a player is able
to set a forest on fire, they will see the price of
wood change. This type of reactivity is consistent with
player expectations, and we believe sufficient to allow
players to suspend their disbelief.

Trade volumes were observed to update in response
to aggregate supply and demand by individual agents.
The quantities of a product available for purchase
depend on how profitable it is to produce this prod-
uct, and how much competition there is to buy this
commodity. During the forest fire scenario we ob-
served trade volumes decrease as existing inventories
were depleted, prices rose as the competition for the
shrinking inventory increased, eventually the supply
disappeared entirely and the demand began to disap-
pear as it was no longer profitable to be in a role
that required raw materials that were not available.
Our model appears to be sufficiently reactive, and the
price updates are consistent with changes in supply
and demand.

In the future, we hope to investigate using this
economic data to create towns and villages populated
by NPCs. The statistical techniques used by pencil
and paper games tend to create communities that
look very similar, and we hope that we are able to
use simulated economic data to introduce variety into
the world while preserving believability. In particular,
deciding how many people should live in an area,
and how they support themselves is a difficult task. A
simulation, such as we provide, could be an invaluable
asset for automating this sort of content creation.

It would be useful to expand the simulation from
a single market to a set of markets interconnected
by slow trade routes, and then introduce regional
resources. We wonder if regional markets would con-
verge to a common set of prices, or would remain
distinct in their beliefs. The speed and cost of trans-
portation likely will play a major role in this behavior,
as an infinitely fast and free transportation network
would reduce problem to the single market discussed
in this paper.

We leave open the problem of measuring the extent
to which a dynamic economy modifies or improves
the user experience in an RPG. This would benefit
most from researchers with a strong social sciences
background.
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