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Abstract – We describe a simple and efficient dynamic 
occlusion culling algorithm for computing potentially visible 
sets (PVS) in densely occluded virtual environments.  Our 
method is an optimization of a widely used technique in which 
a 3D environment is divided into cells and portals.  Our 
algorithm computes the PVS in approximately half the time of 
previous portal methods at the expense of producing a slightly 
relaxed PVS.  In addition, our algorithm enables fast culling 
of objects within cells using inexpensive object space methods 
by using a lookup table to compute the diminished object 
space view frustum.  The algorithm takes advantage of 
temporal coherence, is easy to implement, and is particularly 
well suited for applications that need to compute a PVS for 
use in non-rendering tasks such as AI. 

 
I. INTRODUCTION 

 
 Many applications of interactive 3D computer graphics 
render scenes in which there is a high degree of occlusion.  
Examples include architectural environments and game 
mazes.  It is desirable to determine, as efficiently as 
possible, only those objects that are visible or are 
potentially visible to the viewer.  Occlusion culling 
techniques have been developed to cull from consideration 
large sections of an environment.  What is left is assumed 
to be at least potentially visible.  This potentially visible set 
(PVS) can then be used in a variety of ways.  Typically, the 
PVS is used in rendering with exact visibility determined 
using standard rendering procedures such as view volume 
clipping and z-buffering.  Besides rendering, a PVS can be 
used in a variety of ways.  For example, real-time agents 
navigating a 3D virtual environment may want to compute 
what objects are visible for AI-related processing tasks that 
do not involve rendering. 

In order to facilitate efficient occlusion culling for 
architectural and similar environments, we borrow from 
prior work the idea of cells and portals [1, 5, 7, 11].  A cell 
is a polyhedral volume of 3D space while a portal is simply 
a transparent partition that divides two adjacent cells.   
__________________ 
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Fig. 1. (a) Top view of a building divided into cells (rooms) and portals 
(doors).  (b) Adjacency graph representation with room nodes and portal 

edges. 
 

Typically, cells are visible by the viewer only if the viewer 
is located inside a cell or has a line of sight, through a 
portal, to another cell.  As an example application of cells 
and portals, Figure 1(a) shows the geometry for a building 
divided into one cell for each room or hallway and one 
portal for each door or window.   

Partitioning an environment into cells and portals is 
typically done as a manual preprocess when creating a 3D 
model of an environment.  For example, a modeler, using a 
3D modeling program, may explicitly or implicitly ‘tag’ 
geometry as belonging to a particular cell and also create 
special ‘portal’ polygons connecting cells.  These tagged 
models are typically imported into a rendering engine at 
execution time and the data structures are generated to 
enable the division of geometry into cells and portals.  
These data structures essentially create a directed 
adjacency graph with cells as the nodes of the graph and 
portals as the edges, as in Figure 1(b). 

A related problem in portal schemes is how to handle 
dynamic objects within cells.  Inside a potentially visible 
cell a number of dynamic objects may be present such as 
non-static (i.e. movable) furniture or people.  The geometry 
for these objects would likely be kept separate from the 
geometry of the cell itself.  After determining that a cell is 
potentially visible, the next step is to decide if any in-cell 
objects are visible.  A naïve approach would be to assume  



 
Fig. 2. Objects inside cells connected via portals should be culled with the 

view frustum diminished by the portal. 
 

all objects in the cell are potentially visible.  A more 
efficient technique involves culling in-cell objects against 
the view frustum that is diminished by the portal admitting 
a view of the cell, as shown in Figure 2. 

The most efficient algorithm for dynamic PVS 
evaluation appears to be [7] but we note that screen space 
projection for culling of bounding volumes is not generally 
as efficient as compared to the corresponding object space 
methods.  In particular, several popular bounding volumes 
used to enclose objects in real-time applications include 
bounding spheres, axis-aligned bounding boxes (AABBs) 
and oriented bounding boxes (OBBs).  Fast algorithms 
have been developed to cull these volumes to an object 
space view frustum consisting of six planes where each 
plane is stored as four values corresponding to the four 
coefficients of the equation of a plane, (Equation 1).  An 
efficient sphere-frustum test is given in [10], while 
methods for testing AABBs and OBBs to frustum planes 
are given in [2, 4].  An extensive survey of algorithms for 
these and other bounding volumes is given in [8].  We 
therefore decided to find ways to modify the [7] algorithm 
to gain greater efficiency with a primary goal of culling as 
much geometry as possible in object space as opposed to 
screen space. 

Similar to [7], our algorithm does not compute visibility  
as a preprocess but rather determines the PVS on-demand 
at execution time.  We are not concerned with computing 
exact visibility but only the set of cells that are potentially 
visible.  Our PVS is a conservative estimate of the exact 
visibility in that it overestimates the set of visible cells.  It 
is a slightly larger set than [7] but our algorithm has the 
advantage of running in approximately half the time.  For 
in-cell object culling, our algorithm works in object space 
as compared to the less efficient method of culling in 

screen space proposed by [7].  The algorithm has been 
implemented on a Pentium 4 PC and tested with randomly 
generated environments consisting of hundreds of cells.  
The tests showed a significant speedup in calculating the 
PVS with only a fractional increase in the average size of 
the PVS. 
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II. RELATED WORK 

 
The idea of dividing an environment into convex 

polyhedral cells and convex polygonal portals to 
implement occlusion culling was proposed by Jones [5].  
His algorithm renders a scene by first drawing the 
geometry of the cell in which the viewer is located.  Each 
portal in the cell is then projected into screen space and 
clipped against the screen space view plane.  The resulting 
clipped screen space polygon acts as a clipping mask.  The 
cell connected via the portal is then recursively rendered 
using the clipping mask to clip any geometry before it is 
rendered.  If adjacent cells contain any additional portals, 
the new portals are clipped to the clipping mask and their 
geometry is clipped to the updated mask and rendered.  
The effect is a depth-first traversal and rendering of cells 
visible from the starting cell with only the visible geometry 
being drawn. 

Later work has built on Jones’ algorithm by using the 
cells and portals approach but eliminating the need to 
compute exact visibility, instead relying on a z-buffer.  The 
idea is to compute, as conservatively as possible, a PVS of 
cells that may be visible from the viewer.  Several 
approaches have described computationally expensive 
methods to compute a conservative PVS as a preprocess 
with applications, including, but not limited to, architecture 
[1, 11].   

Luebke and Georges advanced the cells and portals idea 
with a dynamic algorithm that requires only a small amount 
of preprocessing [7].  Their algorithm requires an 
adjacency graph for the cells and portals but does not pre-
compute any PVS information, instead computing it at 
runtime on a frame by frame basis.  Like Jones’ algorithm, 
they project each polygonal portal into screen space after 
which they compute the axial 2D bounding box of the 
resulting points.  They refer to this as the cull box.  The 
cull box is a conservative bound of the portal since any 
objects whose screen space projection falls outside the box 
are guaranteed to be hidden from view.  Also, they follow 
the more contemporary practice of leaving exact visibility 
determination to a renderer as compared to Jones’ manual 
clipping of geometry.  Their algorithm recursively 
considers cells that are viewable through any sequence of 
portals, maintaining an aggregate cull box along the way.  
In the same manner in which portals are handled, their 
algorithm projects the bounding volumes of in-cell objects 
into screen space where they are compared against the 
current cull box to determine visibility. 



It has been suggested that portal culling and in-cell 
culling be done entirely in object space by testing against 
actual frustum planes as opposed to using a screen space 
projection method, although an efficient method for 
computing new frustum planes was not described [3].  In 
his explanation of portal systems, Lengyel provides a 
formula for computing a diminished frustum plane given 
two vertices in world space.  Despite its simplicity the 
calculation requires computing the cross product of the two 
vertices and the magnitude, requiring a square root to be 
taken.  In addition, this needs to be done for each 
diminished plane in the frustum [6].  Compared to the 
technique proposed by [7] which maintains an implicit 
representation of the view frustum as a screen space 
rectangle and computes the diminished view frustum by 
comparing two rectangles, Lengyel’s calculation of an 
explicit frustum is costly. 
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A thorough survey of visibility algorithms for 
architectural applications, including descriptions of portal 
rendering methods, is given in [12]. 
 

III. REQUIRED PREPROCESSING 
 

Our method requires a small amount of preprocessing.  
The environment to be rendered must have its geometry 
broken up into cells and portals.  We use the adjacency 
graph representation shown in Figure 2(b).  We enclose the 
vertices of each portal inside a sphere and store portals as 
spheres instead of maintaining portals as a set of vertices, 
as shown in Figure 3(a).  We are currently using a method 
to compute a near-optimal bounding sphere from a set of 
vertices, [9].  Using spheres overestimates the actual 
geometry of the portal but it allows us to compute the PVS 
much faster at the expense of generating only a slightly 
larger PVS.  For each portal we also store a vector normal 
to the plane of the original portal.  In some environments 
the normal vector can be useful.  For example, Figure 3(b) 
shows an architectural layout in which the view frustum 
can be behind a portal.  In this case we do not want to add 
the cell connected via the portal to the PVS. 
 

 
Fig. 3. (a) Portals enclosed in bounding spheres. (b) Normal vector of 

portal used to determine that view frustum is behind the portal. 

 
Fig. 4. Array of left planes for the view frustum, pre-computed at even 

intervals along the view plane, with normal directions shown.  θ = 
maximum horizontal field of view to be used during execution. 

 
We also pre-compute an array of all possible planes for 

the left, right, top and bottom planes of the view frustum.  
These are used to quickly select the new planes of a 
diminished view frustum.  We use the maximum field of 
view that will be used at execution time and compute a set 
of planes at even intervals on the view plane, as shown in 
Figure 4.  The size of the interval depends on the level of 
accuracy desired.  We use a smaller interval to compute a 
larger set of planes in order to enable the computation of a 
tighter frustum at the expense of a larger array.  A larger 
interval can be used to reduce the size of the array at the 
expense of computing looser diminished frustums.  Each 
plane is stored as a vector – the normal of the plane.  We 
do not store the distance of the plane from the origin.  This 
is the D value in the equation of a plane and is always zero 
for the left, right, top and bottom frustum planes, where the 
equation of the plane is given as: 
 

Ax + By + Cz + D = 0    (1) 
 

If memory space is a consideration then only the left 
and top planes need be pre-computed since their opposites, 
the right and bottom planes, respectively, can be easily 
computed by inverting a portion of the normal vector.  For 
example, in a left-handed coordinate system, a right plane 
can be extracted from a left plane by inverting the x and z 
components of the plane normal. 
 

IV. PVS CALCULATION 
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We keep track of the PVS using a list.  To calculate the 

PVS we begin by placing the cell containing the viewpoint 
in the list.  We refer to this as the starting cell.  We then 
perform a depth-first traversal of the adjacency graph, 
beginning with the starting cell.  For each portal we project 
the center and radius of the sphere onto the view plane of 
the current view frustum and compute the axial 2D 
bounding box of the projected sphere in view space 
coordinates.  This becomes the 2D cull box, which is a 
conservative bound for the portal, and is used in manner 
similar to the cull box of [7].  Each successive portal is 
projected onto the view plane of the view frustum for the 



current cell and tested against the current cull box.  If an 
intersection is detected the adjacent cell is added to the 
PVS, the intersection becomes the new cull box and the 
cell connected by the portal is recursively checked for 
visibility.  Since a cell may be visible through multiple 
portals, we flag each cell added to the PVS to keep it from 
being added more than once. 

In addition to diminishing the size of the cull box for 
each cell added to the PVS, we also compute a new 
diminished object space view frustum for the cell.  The 
view frustum consists of a rectangular view plane and a set 
of six frustum planes.  The near and far planes of the 
diminished view frustum are the same as the original 
frustum.  In order to calculate the other four planes (left, 
right, top, bottom), we keep track of which edges of the 
view plane are intersected by the projection of the portal.  
The intersected edges represent planes in the original view 
frustum that can be simply copied to the new diminished 
view frustum.  For any of the other four planes the portal is 
effectively inside the frustum so these planes need to be 
adjusted to enclose the portal as tightly as possible.  This is 
done by scaling the portal’s projection on the view plane to 
a discrete value used as an index into the pre-computed 
array of frustum planes, effectively reducing the 
calculation of the diminished object space view frustum to 
a table lookup, Figure 5. 

As we recursively calculate the PVS, potentially visible 
cells are added to the PVS list, as shown in Figure 6.  Each 
entry in the list contains a pointer to a data structure 
describing the cell, including both its static geometry and 
any dynamic objects contained in the cell.  In-cell objects 
contain, at least, the geometry of the object and a bounding 
volume.  In addition, each entry in the list also contains a 
diminished view frustum consisting of a 2D view plane and 
6 frustum planes (near, far, left, right, top, bottom).  Each 
frustum plane is comprised of a plane normal and distance 
to the viewpoint origin.  The distance will be zero for all 
planes except the near and far planes.  We also store in 
each entry a distance from the starting cell computed as the 
number of cells traversed.   
 

 
Fig. 5.  Calculating the index into the array of left frustum planes. 
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Fig. 6. (a) Top view of building showing original view frustum diminished 
by portals. (b) The resulting PVS, stored as a list. 

 
Once the PVS list is created we examine each cell in 

the list.  We clip each in-cell object’s bounding volume 
against the cell’s diminished view frustum to determine if 
the in-cell object is potentially visible.  Since these tests are 
carried out in object space we take advantage of fast 
methods to perform the clipping [2, 4, 10].  We can also 
take advantage of temporal coherence by not re-computing 
the PVS in the event the view position has not changed. 
 

V. IMPLEMENTATION AND RESULTS 
 

We have implemented our approach as a C++ program 
using a Pentium 4 Extreme Edition 3.2GHz PC.  We tested 
the algorithm using a program that randomly generates 3D 
mazes consisting of rooms, corridors and stairs.  The static 
geometry of the maze is built on a grid with portals 
generated automatically where geometry crosses grid lines.  
A typical maze consists of several hundred cells and 
portals.  We compared several versions of our algorithm 
against the algorithm of [7] by running all the algorithms in 
parallel as we navigated the maze. 

We wanted a machine-independent metric for 
measuring the amount of work done.  We measured only 
significant arithmetic operations and comparisons.  After 
running timing tests on several PC computers we came up 
with the relative costs for operations shown in Table 1, all 
based on multiplication as the basic operation. 
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d / dx = index / array-size 
index = (integer)(d * array-size / dx) 

 
TABLE 1 

COST OF OPERATIONS 
 

Addition                1 
Subtraction    1 
Multiply     1 
Divide    20 
Comparison    4 
Square Root  230 (using C library sqrt() function) 

Operation  Cost 

 
 



TABLE 2 
EXAMPLE EXECUTION 

 

 
Luebeke = algorithm from [Luebke98] 
Porthole1 = our algorithm without object space view frustum calculation 
Porthole2 = our algorithm with object space view frustum calculation 
Cost = operation cost per frame 
|Portals| = average number of portals examined per frame 
|PVS| = average size of PVS, in cells per frame 
Add/Sub = average number of (additions + subtractions) 
Mul = average number of multiplies per frame 
Div = average number of divisions per frame 
Comp = average number of comparisons per frame 

 
We did not measure any preprocessing or culling of in-

cell objects, instead focusing on the cost of calculating the 
PVS.  We calculated a new PVS every frame.  The tests 
showed our algorithm for PVS calculation, averaged less 
than half the cost of the [7] algorithm at the expense of a 
slightly larger PVS, which, in all of our tests, amounted to 
less than one cell.  We tested two different versions of our 
algorithm – one version that calculated the diminished 
object space view frustum for each PVS cell and another 
version that did not.  View frustum calculation added 
approximately 25% to the per-frame cost of calculating the 
PVS using our method.  A typical test produced the results 
shown in Table 2. 

We also tested the efficiency of our algorithm in culling 
in-cell objects using the diminished object space view 
frustum as compared to a screen space projection method.  
Object space culling was more efficient.  We do not 
present those results here since we believe it is widely 
agreed that object space culling is superior [2, 4, 8, 10]. 
 

VI. CONCLUSION 

 
Obtaining good results using a dynamic cells and 

portals approach to visibility determination can be highly 
dependent on the geometry of the environment.  Our results 
show our approach is a good choice.  Using spheres for 
portals gives a significant speedup when calculating the 
PVS.  The size of the PVS was only marginally larger in 
our tests.  This was expected since spheres can 
overestimate the size of portals more than a bounding 
rectangle.   

We were concerned about degenerate cases in which 
the view frustum, positioned at a right angle to a portal, 
grazed the portal’s bounding sphere without intersecting 
the actual geometry of the portal.  In these cases the 
algorithm will assume the portal has been intersected and 
add the connected cell to the PVS.  Despite this anomaly, 

negative effects since successive portals are unlikely to be 
in the path of the diminished frustum.  This is because the 
diminished frustum will likely be projecting at a right angle 
to the adjacent cell and therefore unlikely to intersect any 
subsequent portals of the adjacent cell. 

There may be implementations w

the problem appears to have little chance for further 

here using portal 
sph
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