
Portholes and Planes: Faster Dynamic Evaluation of Potentially Visible Sets

Timothy Roden, Ian Parberry
Department of Computer Science & Engineering,

University of North Texas, P.O. Box 311366, Denton, Texas 76230
http://www.cs.unt.edu

Abstract – We describe a simple and efficient dynamic
occlusion culling algorithm for computing potentially visible
sets (PVS) in densely occluded virtual environments. Our
method is an optimization of a widely used technique in which
a 3D environment is divided into cells and portals. Our
algorithm computes the PVS in approximately half the time of
previous portal methods at the expense of producing a slightly
relaxed PVS. In addition, our algorithm enables fast culling
of objects within cells using inexpensive object space methods
by using a lookup table to compute the diminished object
space view frustum. The algorithm takes advantage of
temporal coherence, is easy to implement, and is particularly
well suited for applications that need to compute a PVS for
use in non-rendering tasks such as AI.

I. INTRODUCTION

 Many applications of interactive 3D computer graphics
render scenes in which there is a high degree of occlusion.
Examples include architectural environments and game
mazes. It is desirable to determine, as efficiently as
possible, only those objects that are visible or are
potentially visible to the viewer. Occlusion culling
techniques have been developed to cull from consideration
large sections of an environment. What is left is assumed
to be at least potentially visible. This potentially visible set
(PVS) can then be used in a variety of ways. Typically, the
PVS is used in rendering with exact visibility determined
using standard rendering procedures such as view volume
clipping and z-buffering. Besides rendering, a PVS can be
used in a variety of ways. For example, real-time agents
navigating a 3D virtual environment may want to compute
what objects are visible for AI-related processing tasks that
do not involve rendering.

In order to facilitate efficient occlusion culling for
architectural and similar environments, we borrow from
prior work the idea of cells and portals [1, 5, 7, 11]. A cell
is a polyhedral volume of 3D space while a portal is simply
a transparent partition that divides two adjacent cells.

Copyright ACM, 2005. This is the author’s version of the work.
It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version to be published in
Computers in Entertainment, Vol. 3, Issue 2, April/June 2005.
http://www.acm.org/pubs/cie.html

Room
A

Room
B

Room
D

Room
C

Room
E

A

B

C

D

E
(b)(a)

Fig. 1. (a) Top view of a building divided into cells (rooms) and portals
(doors). (b) Adjacency graph representation with room nodes and portal

edges.

Typically, cells are visible by the viewer only if the viewer
is located inside a cell or has a line of sight, through a
portal, to another cell. As an example application of cells
and portals, Figure 1(a) shows the geometry for a building
divided into one cell for each room or hallway and one
portal for each door or window.

Partitioning an environment into cells and portals is
typically done as a manual preprocess when creating a 3D
model of an environment. For example, a modeler, using a
3D modeling program, may explicitly or implicitly ‘tag’
geometry as belonging to a particular cell and also create
special ‘portal’ polygons connecting cells. These tagged
models are typically imported into a rendering engine at
execution time and the data structures are generated to
enable the division of geometry into cells and portals.
These data structures essentially create a directed
adjacency graph with cells as the nodes of the graph and
portals as the edges, as in Figure 1(b).

A related problem in portal schemes is how to handle
dynamic objects within cells. Inside a potentially visible
cell a number of dynamic objects may be present such as
non-static (i.e. movable) furniture or people. The geometry
for these objects would likely be kept separate from the
geometry of the cell itself. After determining that a cell is
potentially visible, the next step is to decide if any in-cell
objects are visible. A naïve approach would be to assume

Fig. 2. Objects inside cells connected via portals should be culled with the

view frustum diminished by the portal.

all objects in the cell are potentially visible. A more
efficient technique involves culling in-cell objects against
the view frustum that is diminished by the portal admitting
a view of the cell, as shown in Figure 2.

The most efficient algorithm for dynamic PVS
evaluation appears to be [7] but we note that screen space
projection for culling of bounding volumes is not generally
as efficient as compared to the corresponding object space
methods. In particular, several popular bounding volumes
used to enclose objects in real-time applications include
bounding spheres, axis-aligned bounding boxes (AABBs)
and oriented bounding boxes (OBBs). Fast algorithms
have been developed to cull these volumes to an object
space view frustum consisting of six planes where each
plane is stored as four values corresponding to the four
coefficients of the equation of a plane, (Equation 1). An
efficient sphere-frustum test is given in [10], while
methods for testing AABBs and OBBs to frustum planes
are given in [2, 4]. An extensive survey of algorithms for
these and other bounding volumes is given in [8]. We
therefore decided to find ways to modify the [7] algorithm
to gain greater efficiency with a primary goal of culling as
much geometry as possible in object space as opposed to
screen space.

Similar to [7], our algorithm does not compute visibility
as a preprocess but rather determines the PVS on-demand
at execution time. We are not concerned with computing
exact visibility but only the set of cells that are potentially
visible. Our PVS is a conservative estimate of the exact
visibility in that it overestimates the set of visible cells. It
is a slightly larger set than [7] but our algorithm has the
advantage of running in approximately half the time. For
in-cell object culling, our algorithm works in object space
as compared to the less efficient method of culling in

screen space proposed by [7]. The algorithm has been
implemented on a Pentium 4 PC and tested with randomly
generated environments consisting of hundreds of cells.
The tests showed a significant speedup in calculating the
PVS with only a fractional increase in the average size of
the PVS.

Visible objects

Objects culled by original view frustum

Objects culled by diminished view frustum

Wall WallPortal

Diminished
View Frustum

Original View Frustum

II. RELATED WORK

The idea of dividing an environment into convex

polyhedral cells and convex polygonal portals to
implement occlusion culling was proposed by Jones [5].
His algorithm renders a scene by first drawing the
geometry of the cell in which the viewer is located. Each
portal in the cell is then projected into screen space and
clipped against the screen space view plane. The resulting
clipped screen space polygon acts as a clipping mask. The
cell connected via the portal is then recursively rendered
using the clipping mask to clip any geometry before it is
rendered. If adjacent cells contain any additional portals,
the new portals are clipped to the clipping mask and their
geometry is clipped to the updated mask and rendered.
The effect is a depth-first traversal and rendering of cells
visible from the starting cell with only the visible geometry
being drawn.

Later work has built on Jones’ algorithm by using the
cells and portals approach but eliminating the need to
compute exact visibility, instead relying on a z-buffer. The
idea is to compute, as conservatively as possible, a PVS of
cells that may be visible from the viewer. Several
approaches have described computationally expensive
methods to compute a conservative PVS as a preprocess
with applications, including, but not limited to, architecture
[1, 11].

Luebke and Georges advanced the cells and portals idea
with a dynamic algorithm that requires only a small amount
of preprocessing [7]. Their algorithm requires an
adjacency graph for the cells and portals but does not pre-
compute any PVS information, instead computing it at
runtime on a frame by frame basis. Like Jones’ algorithm,
they project each polygonal portal into screen space after
which they compute the axial 2D bounding box of the
resulting points. They refer to this as the cull box. The
cull box is a conservative bound of the portal since any
objects whose screen space projection falls outside the box
are guaranteed to be hidden from view. Also, they follow
the more contemporary practice of leaving exact visibility
determination to a renderer as compared to Jones’ manual
clipping of geometry. Their algorithm recursively
considers cells that are viewable through any sequence of
portals, maintaining an aggregate cull box along the way.
In the same manner in which portals are handled, their
algorithm projects the bounding volumes of in-cell objects
into screen space where they are compared against the
current cull box to determine visibility.

It has been suggested that portal culling and in-cell
culling be done entirely in object space by testing against
actual frustum planes as opposed to using a screen space
projection method, although an efficient method for
computing new frustum planes was not described [3]. In
his explanation of portal systems, Lengyel provides a
formula for computing a diminished frustum plane given
two vertices in world space. Despite its simplicity the
calculation requires computing the cross product of the two
vertices and the magnitude, requiring a square root to be
taken. In addition, this needs to be done for each
diminished plane in the frustum [6]. Compared to the
technique proposed by [7] which maintains an implicit
representation of the view frustum as a screen space
rectangle and computes the diminished view frustum by
comparing two rectangles, Lengyel’s calculation of an
explicit frustum is costly.

Viewpoint

View
Plane Left Planes [0] [1] [2] [3] [4] [5] [6]

 Array

θ

A thorough survey of visibility algorithms for
architectural applications, including descriptions of portal
rendering methods, is given in [12].

III. REQUIRED PREPROCESSING

Our method requires a small amount of preprocessing.
The environment to be rendered must have its geometry
broken up into cells and portals. We use the adjacency
graph representation shown in Figure 2(b). We enclose the
vertices of each portal inside a sphere and store portals as
spheres instead of maintaining portals as a set of vertices,
as shown in Figure 3(a). We are currently using a method
to compute a near-optimal bounding sphere from a set of
vertices, [9]. Using spheres overestimates the actual
geometry of the portal but it allows us to compute the PVS
much faster at the expense of generating only a slightly
larger PVS. For each portal we also store a vector normal
to the plane of the original portal. In some environments
the normal vector can be useful. For example, Figure 3(b)
shows an architectural layout in which the view frustum
can be behind a portal. In this case we do not want to add
the cell connected via the portal to the PVS.

Fig. 3. (a) Portals enclosed in bounding spheres. (b) Normal vector of

portal used to determine that view frustum is behind the portal.

Fig. 4. Array of left planes for the view frustum, pre-computed at even

intervals along the view plane, with normal directions shown. θ =
maximum horizontal field of view to be used during execution.

We also pre-compute an array of all possible planes for

the left, right, top and bottom planes of the view frustum.
These are used to quickly select the new planes of a
diminished view frustum. We use the maximum field of
view that will be used at execution time and compute a set
of planes at even intervals on the view plane, as shown in
Figure 4. The size of the interval depends on the level of
accuracy desired. We use a smaller interval to compute a
larger set of planes in order to enable the computation of a
tighter frustum at the expense of a larger array. A larger
interval can be used to reduce the size of the array at the
expense of computing looser diminished frustums. Each
plane is stored as a vector – the normal of the plane. We
do not store the distance of the plane from the origin. This
is the D value in the equation of a plane and is always zero
for the left, right, top and bottom frustum planes, where the
equation of the plane is given as:

Ax + By + Cz + D = 0 (1)

If memory space is a consideration then only the left
and top planes need be pre-computed since their opposites,
the right and bottom planes, respectively, can be easily
computed by inverting a portion of the normal vector. For
example, in a left-handed coordinate system, a right plane
can be extracted from a left plane by inverting the x and z
components of the plane normal.

IV. PVS CALCULATION

Room A

View
Frustum

Room
A

Room
B

Room
D

Room
C

Room
E

(a) (b)

Room
B

We keep track of the PVS using a list. To calculate the

PVS we begin by placing the cell containing the viewpoint
in the list. We refer to this as the starting cell. We then
perform a depth-first traversal of the adjacency graph,
beginning with the starting cell. For each portal we project
the center and radius of the sphere onto the view plane of
the current view frustum and compute the axial 2D
bounding box of the projected sphere in view space
coordinates. This becomes the 2D cull box, which is a
conservative bound for the portal, and is used in manner
similar to the cull box of [7]. Each successive portal is
projected onto the view plane of the view frustum for the

current cell and tested against the current cull box. If an
intersection is detected the adjacent cell is added to the
PVS, the intersection becomes the new cull box and the
cell connected by the portal is recursively checked for
visibility. Since a cell may be visible through multiple
portals, we flag each cell added to the PVS to keep it from
being added more than once.

In addition to diminishing the size of the cull box for
each cell added to the PVS, we also compute a new
diminished object space view frustum for the cell. The
view frustum consists of a rectangular view plane and a set
of six frustum planes. The near and far planes of the
diminished view frustum are the same as the original
frustum. In order to calculate the other four planes (left,
right, top, bottom), we keep track of which edges of the
view plane are intersected by the projection of the portal.
The intersected edges represent planes in the original view
frustum that can be simply copied to the new diminished
view frustum. For any of the other four planes the portal is
effectively inside the frustum so these planes need to be
adjusted to enclose the portal as tightly as possible. This is
done by scaling the portal’s projection on the view plane to
a discrete value used as an index into the pre-computed
array of frustum planes, effectively reducing the
calculation of the diminished object space view frustum to
a table lookup, Figure 5.

As we recursively calculate the PVS, potentially visible
cells are added to the PVS list, as shown in Figure 6. Each
entry in the list contains a pointer to a data structure
describing the cell, including both its static geometry and
any dynamic objects contained in the cell. In-cell objects
contain, at least, the geometry of the object and a bounding
volume. In addition, each entry in the list also contains a
diminished view frustum consisting of a 2D view plane and
6 frustum planes (near, far, left, right, top, bottom). Each
frustum plane is comprised of a plane normal and distance
to the viewpoint origin. The distance will be zero for all
planes except the near and far planes. We also store in
each entry a distance from the starting cell computed as the
number of cells traversed.

Fig. 5. Calculating the index into the array of left frustum planes.

Room
A

Room
B

Room
D

Room C

Room
E

VF1

VF2

VF3

VF4

VF5

A 0 VF1

B 1 VF2

 E 2 VF3

C 1 VF4
D 1 VF5

PVS List

 View
Room Distance

F t

(a) (b)

Fig. 6. (a) Top view of building showing original view frustum diminished
by portals. (b) The resulting PVS, stored as a list.

Once the PVS list is created we examine each cell in

the list. We clip each in-cell object’s bounding volume
against the cell’s diminished view frustum to determine if
the in-cell object is potentially visible. Since these tests are
carried out in object space we take advantage of fast
methods to perform the clipping [2, 4, 10]. We can also
take advantage of temporal coherence by not re-computing
the PVS in the event the view position has not changed.

V. IMPLEMENTATION AND RESULTS

We have implemented our approach as a C++ program
using a Pentium 4 Extreme Edition 3.2GHz PC. We tested
the algorithm using a program that randomly generates 3D
mazes consisting of rooms, corridors and stairs. The static
geometry of the maze is built on a grid with portals
generated automatically where geometry crosses grid lines.
A typical maze consists of several hundred cells and
portals. We compared several versions of our algorithm
against the algorithm of [7] by running all the algorithms in
parallel as we navigated the maze.

We wanted a machine-independent metric for
measuring the amount of work done. We measured only
significant arithmetic operations and comparisons. After
running timing tests on several PC computers we came up
with the relative costs for operations shown in Table 1, all
based on multiplication as the basic operation.

View Plane
of Original
Frustum

dx

d

Diminished
Frustum

Portal Sphere
Projected onto
View Plane

d / dx = index / array-size
index = (integer)(d * array-size / dx)

TABLE 1

COST OF OPERATIONS

Addition 1
Subtraction 1
Multiply 1
Divide 20
Comparison 4
Square Root 230 (using C library sqrt() function)

Operation Cost

TABLE 2
EXAMPLE EXECUTION

Luebeke = algorithm from [Luebke98]
Porthole1 = our algorithm without object space view frustum calculation
Porthole2 = our algorithm with object space view frustum calculation
Cost = operation cost per frame
|Portals| = average number of portals examined per frame
|PVS| = average size of PVS, in cells per frame
Add/Sub = average number of (additions + subtractions)
Mul = average number of multiplies per frame
Div = average number of divisions per frame
Comp = average number of comparisons per frame

We did not measure any preprocessing or culling of in-

cell objects, instead focusing on the cost of calculating the
PVS. We calculated a new PVS every frame. The tests
showed our algorithm for PVS calculation, averaged less
than half the cost of the [7] algorithm at the expense of a
slightly larger PVS, which, in all of our tests, amounted to
less than one cell. We tested two different versions of our
algorithm – one version that calculated the diminished
object space view frustum for each PVS cell and another
version that did not. View frustum calculation added
approximately 25% to the per-frame cost of calculating the
PVS using our method. A typical test produced the results
shown in Table 2.

We also tested the efficiency of our algorithm in culling
in-cell objects using the diminished object space view
frustum as compared to a screen space projection method.
Object space culling was more efficient. We do not
present those results here since we believe it is widely
agreed that object space culling is superior [2, 4, 8, 10].

VI. CONCLUSION

Obtaining good results using a dynamic cells and

portals approach to visibility determination can be highly
dependent on the geometry of the environment. Our results
show our approach is a good choice. Using spheres for
portals gives a significant speedup when calculating the
PVS. The size of the PVS was only marginally larger in
our tests. This was expected since spheres can
overestimate the size of portals more than a bounding
rectangle.

We were concerned about degenerate cases in which
the view frustum, positioned at a right angle to a portal,
grazed the portal’s bounding sphere without intersecting
the actual geometry of the portal. In these cases the
algorithm will assume the portal has been intersected and
add the connected cell to the PVS. Despite this anomaly,

negative effects since successive portals are unlikely to be
in the path of the diminished frustum. This is because the
diminished frustum will likely be projecting at a right angle
to the adjacent cell and therefore unlikely to intersect any
subsequent portals of the adjacent cell.

There may be implementations w

the problem appears to have little chance for further

here using portal
sph

REFERENCES

] John Airey. Increasing Update Rates in the Building Walkthrough

] mas Moller. “Optimized View Frustum

] hitted, Mark Finch, Michael

s

] Solid and a

.

]

]

] is Georges. Portals and Mirrors: Simple, Fast

] endering, Second

] n Efficient Bounding Sphere”, Graphics Gems,

0] Game Programming Gems,

1] on in Densely Occluded Polyhedral

2] , Yiorgos Chrysanthou, Claudio Silva, Fredo

,

Luebeke 1540 6 2.2 282 196 13 196
Porthole1 629 6.6 2.6 114 60 3 95
Porthole2 798 6.6 2.6 119 70 8 106

Algorithm Cost |Portals| |PVS| Add/Sub Mul Div Comp

eres is not desirable. For example, when computing a
PVS for use in rendering, the cost savings of using portal
spheres may be negated by the higher cost of rendering a
larger PVS. In this case it may be desirable to use flat
polygonal portals. Calculating the diminished view
frustum can still be done using our method since the
calculation is based on the 2D axial aligned rectangular
projection of the portal on the view plane. This
compromise would allow for a tighter PVS while enabling
fast culling of in-cell objects.

[1
System with Automatic Model-Space Subdivision and Potentially
Visible Set Calculations. Ph.D. thesis, UNC-CH CS Department TR
#90-027 (July 1990).

Ulf Assarsson and To[2
Culling Algorithms for Bounding Boxes”, Journal of Graphics
Tools, vol. 5, no. 1, pp. 9-22, 2000.

Lars Bishop, Dave Eberly, Turner W[3
Shantz, “Designing a PC Game Engine”, IEEE Computer Graphic
and Applications, vol. 18, no. 1, pp. 46-53, 1998.

Ned Greene. “Detecting Intersection of a Rectangular[4
Convex Polyhedron”, Graphics Gems IV, Heckbert, pp. 74-82, 1994

C. B. Jones. A New Approach to the ‘Hidden Line’ Problem. The [5
Computer Journal, vol. 14 no. 3 (August 1971), pp 232-237.

Eric Lengyel. Mathematics for 3D Game Programming & Computer [6
Graphics, 2002.

David Luebke and Chr[7
Evaluation of Potential Visible Sets. In Pat Hanrahan and Jim
Winget, editors, 1995 Symposium on Interactive 3D Graphics, pp.
105-106. ACM SIGGRAPH, April 1995.

Tomas Moller and Eric Haines. Real-Time R[8
Edition, 2002.

Jack Ritter. “A[9
Glassner, pp. 301-303.

Tim Round, “Object Occlusion Culling”, [1
DeLoura, pp. 421-431, 2000.

Seth Teller. Visibility Computati[1
Environments. Ph.D. thesis, UC Berkeley CS Department, TR
#92/708 (1992).

Daniel Cohen-Or[1
Durand, “A Survey of Visibility for Walkthrough Applications”
IEEE Computer Graphics and Applications, vol. 9, no. 3, pp. 412-
431, 2003.

