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ABSTRACT

We describe an algorithm for the procedural generation of
levels for the popular Japanese puzzle game Sokoban. The
algorithm takes a few parameters and builds a random in-
stance of the puzzle that is guaranteed to be solvable. Al-
though our algorithm and its implementation runs in expo-
nential time, we present experimental evidence that it is suf-
ficiently fast for offline use on a current generation PC when
used to generate levels of size and complexity similar to those
human-designed levels currently available online.

INTRODUCTION

In puzzle games the level design can make the difference be-
tween a game that is trivially easy or completely impossible.
It is difficult to find the balance between the two, where the
levels are challenging but still solvable. Here we present an
algorithm that automates the generation of Sokoban puzzles
of a given difficulty.

Sokoban is a puzzle game played on a rectangular grid. The
goal is for the player’s avatar to push boxes onto marked
goal squares. The challenge comes from the placement of
the walls, goals and boxes and the restriction that the avatar
is only strong enough to push one block at a time and can-
not pull blocks at all. The simplest way of explaining it is
to show a picture, for example Figure 1, which shows a level
with a single box and a single goal. This figure and the other
screenshots in this paper are from JSoko (Damgaard et al.
2010).

Culberson has shown (Culberson 1998) that Sokoban is
PSPACE-complete, meaning that it is in a sense at least as
difficult as almost any one-player game. (Most games that
are hard in this sense are for two or more players.) This,
together with its simple rules, makes Sokoban a challeng-
ing candidate for procedural generation of puzzle instances.
Completely random Sokoban levels are extremely likely to
be unsolvable, or if they are solvable, then they are likely to
be very easy. Even hand-made levels suffer from this prob-
lem unless the person making the level is an experienced
Sokoban level designer.

Most other research done on Sokoban has been geared to-
wards solving existing Sokoban puzzles (Junghanns and
Schaeffer 1997, Botea et al. 2003). Some work has also
been done on estimating the difficulty of a given Sokoban
problem (Jarušek and Pelánek 2010a, Ashlock and Schon-
feld 2010). Relatively little research has been done on gen-
erating new Sokoban levels (Murase et al. 1996, Masaru
et al. 2003), although there are several existing generator pro-
grams (Mühendisi Accessed 2011). Additionally, there has
been some research on generating levels for other PSPACE-
complete puzzle games (Servais 2005).

The interested reader is invited to visit our Sokoban Gener-
ator webpage (Taylor and Parberry 2011) for supplementary
information. This includes some more detailed instructions
for the novice on how to play Sokoban, several hundred pro-
cedurally generated Sokoban levels, a link to an open source
Java implementation called JSoko on which to play-test those
levels, a short video showing JSoko’s solution to some of
our levels, some larger color images from this paper, and the
archived data from the experiments performed to generate the
performance data for the tables and figures that will appear
later in this paper.

OBJECTIVES

Any procedural generation system should satisfy several cri-
teria (Doran and Parberry 2010): novelty, structure, inter-
est, controllability and speed. Our Sokoban level generator
possesses these qualities as follows: Novelty: The genera-
tor produces a new and different puzzle on each run. Struc-
ture: The puzzles are nontrivial yet not impossible to solve,
without requiring verification of this by use of an automated
solver. Interest: Players should find the prospect of solving
the puzzles attractive. This is left for future work; Develop-
ment is currently underway. Controllability: Designers have
control over the size and difficulty of the generated levels.
Speed: The generator can run offline on a modest computer
and generate at least one challenging puzzle, or hundreds of
nontrivial puzzles per day.

Our primary aim is to generate reasonably difficult, but not
impossible, Sokoban levels. There are two reasons for this.
Firstly, these levels are the kind that are hard for a human
to make, at least without a lot of experience. Secondly, we
believe that in puzzle games, difficulty is related to interest.
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Figure 1: Solving a simple Sokoban level. The aim is to push the box to the square marked with the “X” at top left using the
yellow bulldozer. The white arrows indicate player actions. The six images show, from left to right, (1) the start configuration,
(2) push the box one place right, (3) reposition the player below the box, (4) push the box two places up, (5) reposition the player
to the right of the box, and (6) push the box two places to the left into the final configuration.

Interesting puzzles are neither too difficult nor too easy (at
least for most players), and yet it is these puzzles that are the
most difficult to generate.

METHOD

The idea of working backwards from the goal towards the
start is not new (Takes 2007), but previously it has only been
used to solve existing levels. Here we use that idea to gen-
erate new levels. Our algorithm consists of three high-level
steps, each of which will be described in more detail in its
own subsection below.

1. Build an empty room.
2. Place goals in the room.
3. Find the state farthest from the goal state.

EMPTY ROOMS

To build an empty room, we use a method somewhat similar
to that of (Murase et al. 1996). We begin by choosing a width
and height for the level. This is done by simply picking a ran-
dom number within a user-specified range. The level is then
partitioned into a grid of 3 × 3 blocks. Each block is then
filled in using a randomly chosen and randomly rotated or
flipped template. The templates consist of a 3× 3 pattern of
walls and floors surrounded by a border of blanks, walls and
floors (see Figure 2). The borders cause neighboring tem-
plates to overlap. A non-blank tile must match any pattern it
overlaps, whether it is placed before or afterwards.

This overlap helps to create interesting levels by preventing
some bad configurations from being generated. For exam-
ple, the pattern consisting of a single wall in the middle sur-
rounded by a ring of floor will become a large dead-end un-
less there are at least two floor tiles adjacent to each other
and that pattern. Since the templates are randomly rotated
and flipped before being placed, this is very easy to enforce
by simply placing two adjacent floor tiles in the border of
that template and leaving the rest blank.

Figure 2: Templates used to design an empty room.

If the generator places blocks in such a way that it cannot fill
in one of the cells with any of the available templates, it will
discard that attempt and start over. The run time of this step
is very small compared to the rest of the algorithm, so even
throwing away several partial room shapes does not create
any noticeable loss of speed.

Finally, there are some post-processing checks to make sure
the level will work well with the remaining steps. Any level
that fails one or more of these tests is discarded.

• The level is checked for connectivity. There should be
one contiguous section of floor. There is one special
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case here. The templates that allow the player to pass
through, but will not allow a box to pass, are checked
as if there was a wall tile separating the two sides. This
only affects this check, and that tile is counted as a floor
tile in all other cases.

• Any level that has a 4 × 3 or 3 × 4 (or larger) section
of open floor is discarded. By observation, such levels
tend to make levels with very bushy, but not very deep
state spaces. This makes it very hard to generate the
level, but not much harder to solve it.

• The level must have enough floor space for the planned
number of boxes, plus the player and at least one empty
space.

• If the level contains any floor tiles surrounded on three
sides by walls, it is discarded. This is a somewhat aes-
thetic choice, but such tiles are either obviously dead
space if there is no goal there, or an easy place to get
boxes out of the way otherwise, so we think it improves
the quality of the resulting levels somewhat.

PlACING GOALS

Goal placing is done by brute force, trying every possible
combination of goal positions. This is admittedly very inef-
ficient. Many human made levels place the goals in certain
patterns, such as a rectangle of contiguous goals, but by do-
ing a brute force search for the best places to put the goals,
some obvious patterns emerge.

One pattern that seems to hold for most, but not quite all, of
the levels generated so far is that the goals are touching either
a wall or another goal. Whether forcing this would provide
a significant speed-up, or a significant drop in the quality of
the resulting levels has not yet been investigated.

Our generator uses a timer that checks it has exceeded its
allotted time. If it has, it will terminate and return the best
result so far. To help ensure that that result is something
interesting, even if not the best, the positions for the goal
crates are checked in random order. This is done by creating
a shuffled list of the empty spaces on the board.

FARTHEST STATE

For each placement of the goals the system finds the farthest
state from that goal state, that is, the state with the longest
shortest path from itself back to the goal. Over all goal states,
the farthest farthest state is returned as the output of the gen-
erator. Thus, the distance from the goal state to the start state
is the metric by which we judge the resulting levels, as well
as influencing the algorithm used to search the state space.
The definition of distance is crucial. In Sokoban there are
four common distance metrics. The simplest is just the move
count, incremented every time the avatar moves. As a mea-
sure of the difference between states, this does not work very

well. Just making a large labyrinth with only one obvious so-
lution will still give a high distance, but will be fairly trivial
in the end.

The number of box pushes, incremented each time the avatar
moves into a square containing a box, is not much different
than the move count. A level that required the player to push
boxes down long hallways would give a high score, but again
would not be difficult, just tedious.

The box lines metric is more interesting. It counts how many
times the player pushes a box, but any number of pushes of
the same box in the same direction only count as a single box
line. From our observations, the number of box lines corre-
sponds fairly well with the difficulty of the resulting level.
We are currently using the box line metric in our generator.

The last metric is box changes. It counts how many times the
player stopped pushing one box, in any direction, and began
pushing another. This may be an even better measure of dif-
ficulty, and may improve the overall speed of the generator,
but it is more difficult to implement.

Any metric except for the move count allows us to abstract
out the avatar position. Instead of keeping up with which
square the avatar is in, we keep up with which group of con-
tiguous floor squares it could reach. This abstraction pro-
vides a significant decrease in the time it takes to generate
the set of further states.

All of this is done in reverse compared to how Sokoban is
played. The reason for this is to prevent the generator from
having to consider invalid moves. Any state reachable when
moving in reverse will be solvable when played normally.

Unfortunately, none of the usual search algorithms are suit-
able for this problem. The most obvious way to find the far-
thest state is to use a breadth-first search, returning the last
state found, but since moves in Sokoban are not reversible,
the only way to prevent repetitions is to store a list of all
visited nodes. For Sokoban, or any other PSPACE-complete
problem, this will quickly fill up the available memory. Iter-
ative deepening is unsuitable for similar reasons. Informed
searches, like A* or IDA*, are unsuitable because the target
is very vaguely defined, meaning we have no clear indication
when to stop the search. To get around these problems, we
use a form of iterative deepening twice, trading off the high
memory requirements for a somewhat slower algorithm.

proc Go(goal) ≡
startSet := MakeStartSet(goal);
resultSet := startSet;
depth := 1;
do

prevSet := resultSet;
resultSet := Try(startSet, resultSet,depth);
if resultSet = ∅ then exit fi;
depth := depth + 1;

od;
Go := (prevSet,depth).
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proc Try(startSet,prevResults,depth) ≡
resultSet := Expand(prevResults);
tempSet := startSet;
for i := 1 to depth do

resultSet := resultSet− tempSet;
tempSet := Expand(tempSet);

od;
Try := resultSet.

MakeStartSet takes the goal state and places the player into
each available contiguous floor area. Expand takes a set of
states and returns the set of states one step farther. What
those states are depends on which metric is being used, which
is why the choice of metric has such an impact on the running
time. Go is almost a standard iterative deepening algorithm.
It takes the goal, calls MakeStartSet to set things up and
then calls Try one depth at a time. What is different here is
the end condition. Go calls Try until it fails and then returns
the previous set of results. Try takes the starting set, the pre-
vious results and a target depth. It then calls Expand on the
previous results. Then it starts over expanding the start set,
subtracting that from the results. What is left after the target
depth has been reached is all of the nodes that can be reached
in depth steps, but no sooner.

GENERATING LEVEL SETS

Our generator returns the set of all levels that are as far from
the goal state as possible. This can be anywhere from one
to a few hundred levels, and some are obviously better than
others. We have an additional layer over the generator that
attempts to select a good level from those generated and then
collects the results of several runs into a level set. Addition-
ally, it makes an attempt to reject levels that are much too
easy, or are too similar to levels already in the level set. Fi-
nally, when the target number of levels has been reached, it
attempts to sort them by some measure of difficulty.

The questions of what is better and what is not good
enough both rely on the same, rather arbitrary, measure.
We take the candidate level and give it a score based on
a number of factors. To begin with, the score is 100 ·
(pushes − number of sibling levels + 4 · lines − 12 ·
boxes) + Random(0, 300), where pushes is the number
of box pushes in the solution, sibling levels is the number of
other levels the generator found at the same depth, lines is
the number of box lines in the solution, boxes is the number
of boxes in the level and Random is just a random number
between the given values. While this is, again, fairly arbi-
trary, the rationale is that both more pushes and more lines
make the level more difficult, while levels with many sib-
ling levels seem to be less interesting, just by observation.
The number of boxes is subtracted not because more boxes
makes the level less interesting, but because the number of
lines needs to exceed the number of boxes by a certain factor

for the level to have a better chance of being a good level.
The random factor is mainly there to break ties.

Some other checks are made after getting the base score. Any
trapped box is worth -100000 points, which is almost guar-
anteed to get the level rejected. Any box touching a wall
is worth -150 points, a box touching the player is worth 50
points, and a box touching another box is worth 30 points.
Finally, a goal area touching a goal area is worth 30 points.
These constants can be adjusted by the individual designer
to suit his or her intuition about features possessed by good
Sokoban levels. Any level with a final score of 0 or less is
rejected. The base score is quite a bit higher than the scores
for most of the various other checks though, so not many lev-
els are rejected at this point. This same score is then used to
choose the best level from those generated, assuming any are
left.

Once a level has passed all of the other tests, the program
checks to see whether or not it is too similar to another level
already in the set. Currently, this just removes the player and
checks for exact matches for all of its rotations and reflec-
tions. This still generates a few levels that a human would
consider too similar, so there is still more work to be done
here.

Assuming no other level is too similar, the level is added to
the set. When the set gets to target size, it is sorted by diffi-
culty and written to a file. The measure of difficulty we cur-
rently use is lines·log lines+log time−lines/pushes. This
is based on our observations that the number of box lines is
the most important factor. time is the time taken to gener-
ate that level, in seconds, and is mainly used as a tie breaker.
The lines/pushes factor is small correction that favors lev-
els with shorter box lines rather than long corridors.

EXPERIMENTAL RESULTS

We have implemented and tested our new algorithm for the
automatic generation of Sokoban levels. Figure 6 contains
some screenshots of sample levels generated. The reader is
invited to visit our Sokoban Generator webpage (Taylor and
Parberry 2011), where he or she can download some of our
level sets and try them out.

Our algorithm is certainly suitable for offline use in a level-a-
day style game. In practice it can generate several levels over
the course of a day depending on how much CPU power it
is given and how large the desired levels are. The theoretical
run time for the generation of one level is roughly

b

(
s

b

)2

,

where b is the number of boxes and s is the number of empty
spaces. This is feasible for a fairly small number of boxes
that might occur in practice. We have been able to generate
levels with 4 boxes within a 2× 3 level outline within a few
hours.
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Figure 3: Examples showing the relative sizes of 1× 2,
2× 2, 2× 3, and 3× 3 Sokoban levels.

We ran experiments measuring the average run-time generat-
ing 10 random puzzles of each size 1 × 2, 2 × 2, 2 × 3, and
3 × 3. See Figure 3 for an indication of the relative sizes of
these levels. All of these results are from runs on an Intel i7
3.2 GHz quad-core processor with hyperthreading. Our sys-
tem is not written to make use of the extra cores, but we run
several independent copies of the code simultaneously, rely-
ing on the operating system to place each copy on a separate
processor core.

Tables 1 and 2 show in Column 3 the experimental running
time required to generate 2-box and 3-box puzzles respec-
tively, averaged over 10 samples for each entry. These data
are depicted pictorially in Figure 4 (top) with an exponential
trendline. Tables 1 and 2 also show in Column 2 the average
number of moves required to solve the generated puzzles us-
ing the autosolver in JSoko, set to “move optimal with best
pushes”. These data are depicted pictorially in Figure 5 (bot-
tom).

Table 3 shows in Column 3 the average experimental running
time for 2× 2 puzzles (which have 36 cells). See the level at
top right of Figure 3 to get some idea of the size of the puz-
zle. These data are depicted pictorially in Figure 5 (top) with
an exponential trendline. Table 3 also shows in Column 2
the average number of moves required to solve the generated
puzzles using the autosolver in JSoko, set to “move optimal
with best pushes”. These data are depicted pictorially in Fig-
ure 4 (bottom).

Levels with a single box are generally uninteresting. Levels
with 2 boxes can be generated very quickly, usually within a
few seconds, but tend to be very easy. At 3 boxes the levels
start to get slightly more interesting, and can still be gener-
ated within a few minutes. Levels with 4 or more boxes can

Size Moves Time
1× 2 26 < 1 sec
2× 2 48 1.9 sec
2× 3 60 16 sec
3× 3 73 128 sec

Table 1: Average runtime for the generation of 2-box puzzles
with the corresponding average number of moves needed to
solve them (averaged over 10 random samples each).

Size Moves Time
1× 2 38 58 sec
2× 2 69 2.7 min
2× 3 98 1.1 hr
3× 3 115 24.5 hr

Table 2: Average runtime for the generation of 3-box puzzles
with the corresponding average number of moves needed to
solve them (averaged over 10 random samples each).

Figure 4: The average generation time in seconds for puzzles
with 2 and 3 boxes versus puzzle area (top) and the number
of moves needed to solve them (bottom).
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Boxes Moves Time
2 48 1.9 sec
3 69 2.7 min
4 100 3.4 hr
5 109 26 hr

Table 3: The average experimental running time for the gen-
eration of 2× 2 puzzles, with the corresponding average
number of moves needed to solve them. The averages were
computed over 10 random samples each.

Figure 5: The average number of moves (top) and the average
generation time in seconds (bottom) versus number of boxes
for the generation of 2× 2 puzzles.

be very interesting, and difficult, but take substantially more
time to generate. Using the timer feature, we can force the
generator to return the best result after a given time period.
Using a time limit of 4 hours, we have generated levels with 5
and 6 boxes that appear interesting and difficult (for example
Figure 6 includes some 5-box puzzles).

Using just iterative deepening, the algorithm runs several
times faster, but uses much more memory. On some levels,
the program crashed after consuming over 1.5GB of memory.
Using our algorithm, the same levels never exceeded 40MB
of memory.

CONCLUSION AND FUTURE WORK

While we found the puzzles that we generated “interesting”,
we provide no justification for this claim in this paper, al-
though we do invite the reader to try for themselves by vis-
iting our Sokoban Generator webpage (Taylor and Parberry
2011). We plan to gather data from play-testing in the next
phase of this research, and we will report the results in a later
paper. Some research into what makes a level interesting and
what makes it difficult is needed, though some research on
these questions has already been done (Ashlock and Schon-
feld 2010, Jarušek and Pelánek 2010b).
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