Proceedings of the 6th Annual North American Conference on Al and Simulation in Games (GAMEON-NA), pp. 27-34, EUROSIS, Troy, NY, 2011.

VERY FAST REAL-TIME OCEAN WAVE FOAM RENDERING USING HALFTONING

Mary Yingst
Dept. of Computer
Science & Engineering
University of North Texas
Denton, TX, USA
maryyingst@my.unt.edu

KEYWORDS

Physics and Simulation, Design

ABSTRACT

We introduce an efficient method for emulating sea foam
dissipation suitable for use in real-time interactive environ-
ments such as video games. By using a precomputed dither
array with controlled spectral characteristics adopted from
halftone research as a control mechanism in the pixel shader,
we can animate the appearance of foam bubbles popping in
a random manner while allowing them to clump naturally.

INTRODUCTION

Real-time animation and rendering of ocean waves is often
seen in video games, and adding foam to the waves lends
an added level of realism. We describe a fast and effective
method for rendering ocean wave foam by augmenting tradi-
tional texture based foam saturation methods with techniques
from halftoning.

Takahashi et al. (2003) and Thiirey et al. (2007) represent
foam as a particle system. Although this is visually pleasing,
it is computationally intensive. In large scale environments
such as the ocean it is more practical to use faster texture
based methods. Many methods of rendering foam rely on
applying a texture of foam to the water surface. These meth-
ods apply a texture using a foam saturation, or density value
to represent transparency of the texture which is applied to
a mesh representing the water’s surface (see, for example,
Jensen and Golias (2001), Jeschke et al. (2003), and Kry-
achko (2005)). Li et al. (2008) similarly apply a foam color
according to its density.

Real ocean foam consists of bubbles clumped together by
surface tension on the surface of the water. Foam does not
simply fade or become transparent as the bubbles dissipate.
Traditional methods of foam generation ignore the active na-
ture of foam density where bubbles pop over time. Since
surface bubbles are either present or not in an area of water,
this binary nature lends itself to the use of halftoning, a pro-

Jennifer R. Alford
Digital Teapot, Inc.
Fort Worth, TX, USA
gralford@acm.org

27

Ian Parberry
Dept. of Computer
Science & Engineering
University of North Texas
Denton, TX, USA
ian@unt.edu

cess used to reproduce images using patterns of black dots.
Our use of halftoning with a saturation function that changes
over time causes bubbles to appear to pop.

The remainder of this note is divided into five sections. First
we give a high-level overview of our approach. Then we
review in more depth our choice of foam saturation function,
our use of a halftoning mask generated using methods from
the halftoning literature, and how we apply that mask in a
pixel shader. Finally we conclude with a discussion of our
results.

OVERVIEW OF OUR APPROACH

To generate foam on the surface of the water using a foam
saturation function, we must create the water surface as a
mesh. Each location on the water’s surface has a calculable
saturation value using this function. The function must vary
over time for the foam to animate and become more and less
dense as waves pass and change. In figure 1 we see that
by applying halftoning methods to a saturation function, we
take an otherwise smooth area of the function and create the
randomness expected when foam generates and dissipates.

Figure 1: By replacing the application of a foam texture with
a white tone we see that applying our method creates ran-
domness on the right in the otherwise smooth saturation re-
sults pictured on the left.

Halftone masks, or dither arrays, are arrays of values that
have a one-to-one correspondence with pixels in an image,
or in our application, a texture. Each value of the halftone
mask is used as a threshold against the corresponding texture

Proceedings of the 6th Annual North American Conference on Al and Simulation in Games (GAMEON-NA), pp. 27-34, EUROSIS, Troy, NY, 2011.

pixel to produce a binary output image that indicates, at each
pixel position, whether the texture falls above or below the
threshold. This process is commonly referred to as thresh-
olding. Halftone masks are characterized by the binary pat-
tern that results when thresholded against a constant image,
or texture. Choosing threshold value values at each mask po-
sition is non-trivial. Ulichney (1987) provides a classic study
of mask design and describes widely used metrics, based on
the Fourier Transform, to characterize masks by their radi-
ally averaged power spectrum (RAPS), a measure of energy
at different frequency bands, and anisotropy, a measure of ra-
dial symmetry. While halftoning can be accomplished with
a variety of computational methods, we restrict ourselves to
the use of masks because, as point operations, they are com-
putationally efficient and naturally suited to pixel shader op-
erations.

We depart from the traditional use of halftoning in print-
ing and image display, which seeks to reduce visually ob-
jectionable noise in image reproduction, and instead we use
a halftone mask to add noise. We draw on recent work in
halftone mask design by observing that it is possible to de-
sign masks to produce lumping binary patterns which are
reminiscent of the clumping of sea foam. We also observe
that the binary nature of the threshold output is well-suited
to simulate foam bubble popping when the mask is fixed
per frame but the underlying image is not. In this work,
we present a novel way to use halftone masks in conjunc-
tion with a saturation function and a texture to simulate foam
and the popping behavior of foam. Further, we observe that
the difference between the threshold value and an image or
a texture provides a magnitude at each pixel position that we
use as a transparency value for additional realism.

We use halftone masks that have been generated using a sym-
metric Gaussian function to filter white noise as described
in Alford and Sheppard (2010). Gaussian filtering applies a
two-dimensional Gaussian function to an image. o is a value
in the Gaussian function that denotes the width of the curve in
the function; as o increases, the width of the curve increases.

We simulate the effect of foam bubbles popping by finding
the saturation of foam on the water’s surface and applying a
precomputed halftone mask to it. We use a modified version
of the vertex shader outlined in a paper by Van Drasek III
et al. (2010) to create parametric waves upon which to apply
our foam. The next two sections will describe the saturation
function and the halftone mask in more detail.

THE SATURATION FUNCTION

Kryachko (2005) uses the following foam saturation function
which is dependent on ocean height. H is base height, H is
height, and Hmax is height where foam is maximum.

H - Hj

J@) = Hmax — Hp

28

Figure 2: Foam with Kryachko’s saturation function.

Although Kryachko’s function achieves somewhat attractive
results (see Figure 2 for example), the function results in
a symmetric foam distribution, whereas we wish to model
foam that is created by turbulence at the front of the wave
and fades away behind it. Knowing the target foam density
along the wave shape, we chose to apply et**(#) to the same
vector and frequency used to determine wave shape.

12

10 T

8 4

6 4

4 4

2 4

0 N > |

A r— s e UL T

_2-8—7-6-5—4-3-2-1312345678

Figure 3: ¢'2(®) sin(x)

We use the following formulae from Van Drasek III et al.
(2010) for the height y of the wave:

A((sin(f(z, 2)) +1)/2)K

y frd
0F) = (7-k)21/Nag + ¢t
o = 2smw/\,

and so we use 6(?) to also generate the periodic function.

F(5) = eftan((z_)'vl_c‘)Z’/r/)\adijd)t))’
where 7 = (z, z) is position, & is the wave direction, s is
the speed of the wave, ¢ is time, K is wave slope, A is wave
amplitude, \,g4; is wavelength adjusted for ocean depth, and
A is original wavelength.

Since we are overlaying this function on the sine function
that determines wave shape, we need to modify the formula
slightly to align the foam with the waves. In Figure 3 we
see that e*2"(#) is twice as frequent as sin(z), so we divide
O(x,z) by 2. Also to align the highest part of our function
with the front part of the sine wave we add 7/2. Our fi-
nal formula is as follows, and gives a attractive saturation of

Proceedings of the 6th Annual North American Conference on Al and Simulation in Games (GAMEON-NA), pp. 27-34, EUROSIS, Troy, NY, 2011.

foam starting at the wave front and fading behind it.

f(f[f) = (67 tan((U'k)ﬂ/)‘adj+¢t/2)+ﬂ/2))/O’

where C is a user defined constant that governs the intensity
of the foam. (We use C' = 4 for convenience, but this value
may be tuned by the designer.)

Saturation is computed as follows. Adjwavelength, and
phaseC are calculated in the vertex shader and the values are
interpolated for use in the pixel shader.

float getmysaturation (float2
wavedirection , float2 xzposition ,
float Adjwavelength, float phaseC)

float result =
dot(wavedirection , xzposition)
x6.28f/Adjwavelength ;
result = result + phaseCxgTimeNow;
result = pow(2.718f,—1.0fx%
tan ((result/2.0f)+ 1.07f))/4.0f;
return result;

To pass values from the vertex shader we simply define an
extra variable in the vertex output with a TEXCOORD se-
mantic. Then the vertex shader sets the required values as
follows:

struct VertexOutput

{
float4 impVars : TEXCOORD4;
}
VertexOutput VS(...)
{

VertexOutput OUT = (VertexOutput)0;
OUT.
OUT.

OUT.
OUT.

impVars[l]=adjustedWavelength ;
impVars[0]=phaseConstant;

impVars[2] = Po[0]; //xposition
impVars[3] = Po[2]; //zposition

}

float4 PS(VertexOutput IN)

{

: COLOR

float saturated=getmysaturation
(direction , float2 (IN.impVars[2],
IN.impVars[3]), IN.impVars[1],
IN.impVars[0]);

THE HALFTONE MASK

We use a halftone mask to threshold the saturation function
to create dissipation through bubble popping. As satura-
tion decreases over time at a specific location, the value will
approach and pass the threshold used in our mask. While
the saturation value is above the threshold, the foam will be

29

present, but as time passes and the value decreases, even-
tually the foam will pop and dissappear. Since bubbles in
foam clump, we must choose a halftone mask that produces
clumps in the resulting dot patterns. Clumpiness, or cluster-
ing, can be seen in how close together some of the foam is
while in other areas there are gaps.

Alford and Sheppard (2010) show a variety of halftone masks
created using radially symmetric Gaussian filters. We used
their masks created using filters having ¢ ranging from 1.5
to 24 to produce the images in Figure 4 column 1. In Fig-
ure 4 we can see that the higher the o, the closer together
some of the dots are. By analyzing the RAPS we see that as
o increases, first oscillation is dampened in the high frequen-
cies, then the values of the high frequency region is greatly
reduced (Alford and Sheppard 2010). The results of this can
be seen in the increased clustering and clumping behavior of
the dot patterns. We found o = 24 gives adequate visual
clusters of foam.

[

(@ o=1.5

P amaimmn

LA

(b) o =6

P i

p—

(©) o =24

Figure 4: Halftone masks created by Gaussian filters having
o ranging from 1.5 to 24, with corresponding RAPS (images
courtesy Alford and Sheppard (2010)).

Proceedings of the 6th Annual North American Conference on Al and Simulation in Games (GAMEON-NA), pp. 27-34, EUROSIS, Troy, NY, 2011.

APPLYING THE MASK

To create the halftoned saturation function h(u, v) where u, v
are texture coordinates and h(u, v) is a £1oat 4 RGBA color
value at that position, we first create a texture to contain the
mask information so that the data can be imported into the
pixel shader. Given a 512 x 512 halftone mask, a 512 x 512
pixel texture is generated. This texture, when tiled across the
surface of the water, has a corresponding u, v texture coor-
dinate for each ¥ = (z, z) position on the water. The mask
value m(u,v) can then be used to threshold the saturation
function f(z, z) as follows:

(0,0,0,1)
(1,1,1,1)

if f(x,2) < m(u,v)

h(u,v) = if f(z,2) > m(u,)

ey

Figure 5: Applying Equation 1 to the saturation function at
left gives the image at right.

We can then create a fading halftoned saturation function,
g(u,v), so the dots fade before they pop. We do this by
taking the difference between saturation and mask number.
Figure 1 shows the results of applying halftoning with fading
to the saturation function. For all g(u,v), « = 1.

clamp(f(x, z)/2 — m(u/v),0,1) %
h(u,v).rgb

g(u,v).rgb =
@)
Finally we apply ¢(u,v), the foam texture to generate the

final halftoned, textured, and faded image j(u,v). For all
jlu,v), = 1.

(0,0,0) if f(z,z) < m(u,v)
J(u,v).rgb = < g(u,v)* 3)
t(u,v).rgb if f(z,2z) > m(u,v)

Given a sampler for the halftone mask texture, MaskSampler;
a sampler for the foam texture, SAMP_FoamTexture; and a
sampler for the water surface texture, SAMP_WaterTexture;
the following code finds the resulting color for the water’s
surface. The higher TEXscale or MASKscale is, the smaller
the tiled texture will appear. A value of 400 for MASKscale
gives suitably sized dots when using a 512 x 512 pixel mask.

30

Figure 6: Coastline image using our new halftoning method,
Equation 3.

// get water and foam texture color
float4 textureSamp = tex2D(
SAMP_WaterTexture ,
IN.TexCoordl *TEXscale);
float4 foamSamp = tex2D(
SAMP_FoamTexture ,
IN.TexCoordl *TEXscale);

// get the threshold from the mask

float masknumber=(tex2Dlod (
MaskSampler, float4 (IN.TexCoordl .xy
*MASKscale ,0,0)));

// threshold the saturation value
if (!((saturated)>(masknumber))){

foamSamp [0] = O;
foamSamp[1] = 0;
foamSamp[2] = O0;

// find the value for fading the foam
float difference = clamp(saturated
— masknumber, 0.15f, 3.0f);

// get the final foam value
foamSamp = difference * foamSamp;

//add the value to the water texture

//and clamp to a valid color

float4 result =clamp ((textureSamp+
foamSamp) ,0,1);

result[3] = 1.0f;

RESULTS

Figure 7(a) shows the traditional method of fading a foam
texture according to a saturation function, similar to Kry-
achko (2005). Figure 7(b) shows the saturation halftoned us-

Proceedings of the 6th Annual North American Conference on Al and Simulation in Games (GAMEON-NA), pp. 27-34, EUROSIS, Troy, NY, 2011.

ing Equation 1 and no other functions applied. This method
shows a realistic popping effect, but the foam is too harsh
and white. Figure 7(c) shows our halftoning method in com-
bination with a foam texture using Equation 3.

(c) Using a halftone mask with a foam texture.

Figure 7: The results of using 3 different methods with the
same settings (heightmap, wave speed, direction, and ampli-
tude).

We performed some experiments to obtain a preliminary
benchmark for the extra computation load required by our
new halftoning technique (Figure 7(c)) to the traditional tex-
turing technique (Figure 7(a)). We ran both algorithms for
five minutes using NVidia Composer, using FRAPS to mea-
sure average frames-per-second. The scene rendered in all

| Graphics Card | Textured | Halftoned |
NVidia 8800 65.5fps 65.0fps
NVidia GeForce GT320m | 80.4fps 78.2fps
Intel HD Graphics 3000 85.0fps 84.5fps

Table 1: Comparison of rendering frame rates in frames per
second (fps).

31

ryare ~
T i

Figure 8: Scene used for measuring frame rates.

experiments is shown in Figure 8. The results are shown in
Table 1. We conclude that the extra load on the video ap-
pears to be less that 3% higher than traditional texture-fading
techniques, which is negligible.

Still pictures such as shown in Figure 7 and Figure 8 do not
adequately capture the full effect of our algorithm. Figure 9
shows how foam bubbles fade and pop over time in the wake
of each wave. This can be seen to best advantage in an ani-
mation such as the one we have placed online at Yingst et al.
(2011).

Figure 9: Close up view of foam bubbles fading and popping
over time.

CONCLUSION AND FURTHER WORK

Not only does our halftoning technique achieve our goal of
simulating foam dissipation in a real-time environment, but
it also can be applied with little additional cost to traditional
texture based methods that obtain foam saturation at the wa-

Proceedings of the 6th Annual North American Conference on Al and Simulation in Games (GAMEON-NA), pp. 27-34, EUROSIS, Troy, NY, 2011.

ter’s surface. The saturation function used must vary over
time for the bubble popping effect to occur using the halfton-
ing method.

Our method currently produces pixelation at close range to
the camera. One method for remedying this would be a sec-
ond pass of a pixel shader to smooth the edges of the gener-
ated texture, which we leave as future work.

REFERENCES

Alford J.R. and Sheppard D.G., 2010. Approximating Pois-
son Disk Distributions by Means of a Stochastic Dither Ar-
ray. In EG UK Theory and Practice of Computer Graph-
ics.

Jensen L.S. and Golias R., 2001. Deep-Water Animation
and Rendering. URL www.gamasutra.com/gdce/
2001/jensen/Jjensen_01.htm. Presented at Game
Developers Conference, Europe.

Jeschke S.; Birkholz H.; and Schmann H., 2003. A Proce-
dural Model for Interactive Animation of Breaking Ocean
Waves. In Proceedings of WSCG 2003. WSCG.

Kryachko Y., 2005. Using Vertex Texture Displacement for
Realistic Water Rendering. GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation.

Li Y; Jin Y.; Yin Y.; and Shen H., 2008. Simulation of
shallow-water waves in coastal region for marine simu-
lator. In Proceedings of The 7th ACM SIGGRAPH Inter-
national Conference on Virtual-Reality Continuum and Its
Applications in Industry. ACM, 15:1-15:5.

Takahashi T.; Fujii H.; Kunimatsu A.; Hiwada K.; Saito T.;
Tanaka K.; and Ueki H., 2003. Realistic Animation of
Fluid with Splash and Foam. Computer Graphics Forum,
22, no. 3, 391-400.

Thiirey N.; Sadlo F.; Schirm S.; Miiller-Fischer M.; and
Gross M., 2007. Real-time simulations of bubbles and
foam within a shallow water framework. In Proceedings
of the 2007 ACM SIGGRAPH Eurographics Symposium
on Computer Animation. Eurographics Association.

Ulichney R., 1987. Digital Halftoning. Cambridge, Mass:
The MIT Press.

Van Drasek III J.; Bookout D.; and Lake A., 2010. Real-
Time Parametric Shallow Wave Simulation. URL http:
//software.intel.com/sites/billboard/
article—-archive/real-time—-parametric/.

32

Yingst M.; Alford J.R.; and Parberry 1., 2011. Sea Foam.
URL http://larc.unt.edu/ian/research/
seafoam/.

BIOGRAPHY

MARY YINGST was born and raised in Texas. She received
her BS in computer science in 2007, and is a recent gradu-
ate of the University of North Texas, College of Engineering
with a MS in Computer Science. She has participated in the
game development program at UNT for several years, fos-
tering her research interests which include graphics for game
development and real-time simulation. Her Erdos number is
4. Her home page is http://maryingst.net.

JENNIFER (GINGER) ALFORD is Director of Computer
Sciences at Trinity Valley School and President of Digital
Teapot, Inc, (www.digitalteapot.org). She holds a PhD in
electrical and computer engineering from the University of
Towa with a specialization in image processing and particu-
lar expertise in halftoning. Her 25 years experience in image
processing and computer graphics include industrial research
and software development, serving as an technical consultant
and expert witness for intellectual property attorneys, college
and graduate level teaching, and several academic publica-
tions. Dedicated to research and education, she has partnered
with the Laboratory for Recreational Computing at the Uni-
versity of North Texas as a Research Associate.

IAN PARBERRY was born in London, England and emi-
grated as a child with his parents to Brisbane, Australia. Af-
ter obtaining his undergraduate degree there from the Uni-
versity of Queensland he returned to England for a PhD from
the University of Warwick. He has worked in academia in
the US ever since. He is currently a full Professor in the De-
partment of Computer Science and Engineering at the Uni-
versity of North Texas where he recently stepped down from
a 2-year term as Interim Department Chair. A pioneer of the
academic study of game development since 1993, his under-
graduate game development program was ranked in the top
50 out of 500 in North America by The Princeton Review in
2010. He is on the Editorial Boards of the Journal of Game
Design and Development Education, IEEE Transactions on
Computational Intelligence and Al in Games, and Entertain-
ment Computing, and he serves as the Secretary of the So-
ciety for the Advancement of the Science of Digital Games,
which organizes the Annual Foundations of Digital Games
conference. He is the author of 6 books and over 80 articles
over 30 years’ experience in academic research and educa-
tion. His h-index is 18 and his Erdos number is 3. He can
be contacted at ian@unt . edu or on Facebook. His home
pageis http://larc.unt.edu/ian.

