
FAST, BELIEVABLE REAL-TIME RENDERING OF
BURNING LOW-POLYGON OBJECTS IN VIDEO GAMES

Dhanyu Amarasinghe and Ian Parberry
Department of Computer Science & Engineering

University of North Texas
Denton, TX, USA

Email: dhanyu@gmail.com, ian@unt.edu

KEYWORDS
Hardware acceleration, deformation, procedural content gen-
eration, low-polygon modeling, CUDA, GPU.

ABSTRACT

Deformation of the low-polygon models used in video games
is challenging since it is hard to maintain realism. We show
how real-time mesh refinement can be used for modeling the
deformation and consumption of low-polygon models under
combustion while generating procedural fire. Our focus is
on trading realism for computation speed so that processing
power is still available for other computational tasks. Our
method also allows for quick and easy LOD (level-of-detail)
rendering of burning objects. We have implemented and
tested our method on a relatively modest GPU (Graphics Pro-
cessing Unit) using NVIDIA’s CUDA (Compute Unified De-
vice Architecture). Our experiments suggest that our method
gives a believable rendering of the effects of fire while using
only a small fraction of CPU and GPU resources.

INTRODUCTION

Model deformation is an essential part of maintaining the re-
alism of physical objects in video games. While high quality
graphics is an inescapable necessity for the modern video
game, developers must choose detailed structure of game
models carefully due to the limitations of hardware resources
and processing power needed in real time rendering. One
of the key features of such detailed structure is a number of
polygons per model. Low-polygon models are typically used
as much as possible, with their deficits hidden by a choice of
pragmatic textures. As a tradeoff between quality and perfor-
mance, many game developers use extremely low-polygon
models for most of the flat surfaces in the game environment
such as doors, windows, and walls. Since deformation of
such low-polygon models while maintaining realism is quite
thorny, developers commonly resort to model swapping tech-
niques.

We consider real-time emulation of the deformation and con-
sumption of low-polygon models due to combustion. Fire
simulations may be used effectively to increase the reality
of visual effects in computer animations. Real-time triangle
subdivision is a useful technique, but complete subdivision of

Figure 1: Procedural triangulation of a burning door.

each and every model is not practical in real time. We extend
the method discussed in our prior work (Amarasinghe and
Parberry 2011b) to introduce a real-time refinement method
that can be used in deformation and real-time rendering of
burning low-polygon models while maintaining performance
and realism. Our aim is to increase believability by a large
amount while increasing computation load only minimally.

We are able to triangulate burning low-polygon objects on-
the-fly in response to real-time procedural fire in order to pro-
vide more detail where it is needed Figure 1 shows where
a simple 12-triangle door is triangulated near the source of
compbustion, and Figure 2 show a 12-triangle box at vari-
ous stages of burning. The interested reader can visit our fire
web page (Amarasinghe and Parberry 2011a) for larger color
images and a video demonstration of a burning low-polygon
door as shown in Figure 1.

The remainder of this paper is divided into four main sec-
tions. The first section sets the context for this paper by de-
scribing prior work. The second section describes our trian-
gle subdivision algorithm. The third section shows that our
method is particularly suited to producing models at differ-
ent levels of detail for faster rendering. The fourth section
describes the results of some preliminary experiments with a
CUDA implementation of our algorithm.

Proceedings of the 6th Annual North American Conference on AI and Simulation in Games (GAMEON-NA), pp. 21-26, EUROSIS, Troy, NY, 2011.

21



Figure 2: The consumption of a low-polygon model and the spread of procedural fire.

PRIOR WORK

In (Amarasinghe and Parberry 2011b) we describe a tech-
nique for emulating the consumption and deformation of
high-polygon models due to fire. The obvious way to ex-
tend this technique to low-polygon models is to use real-time
mesh refinement, subdividing triangles only when necessary.

There is a great amount of prior work on subdivision sur-
face schemes for fast mesh refinement in real-time applica-
tions. The idea of using mesh refinement was used in (Wicke
et al. 2010) to capture detailed physical behavior in simulat-
ing fractures by subdividing mesh elements. The kind of pa-
rameterizations that are optimal for remeshing are discussed
in (Floater and Hormann 2005, Hormann et al. 2001). A
method for adaptive mesh refinement for an expanding heat
boundary is discussed in (Peyré and Cohen 2006). The pa-
pers (Guo et al. 2006), and (He et al. 2010) discuss paramet-
ric subdivision of mesh surfaces, while (Borouchaki et al.
2005) performs real time deformation by applying remesh-
ing to selective material. Useful information about surface
subdivision can be found from Kovacs and Mitchell’s crease
approximation method (Kovacs et al. 2009). The survey pa-
per (Alliez et al. 2008) on remeshing of surfaces is also quite
useful.

Relatively little work has been published about hardware as-
sisted implementation of subdivision schemes. Some use-
ful mesh refinement techniques using modern GPUs can be
found in (Borouchaki et al. 2005, Boubekeur and Schlick
2005). The so-called GAMeR technique from (Schive et al.
2010) uses the GPU for adaptive mesh refinement in as-
trophysics. Some useful techniques for subdivision us-
ing modern GPUs can be found in (Fan and Cheng 2009)
and (Settgast et al. 2004).

SUBDIVISION

Graphics Processing Units (GPUs) are no longer limited to
just scene rendering. Technology such as NVIDIA’s CUDA
(Compute Unified Device Architecture) provides a platform
for implementing general purpose computation on GPUs.
However, as mentioned in (Boubekeur and Schlick 2005),
there are limitations to data translation from CPU to GPU,
since current graphics hardware is unable to generate more
polygons than those sent through the graphics bus by the

Figure 3: The Adaptive Refinement Pattern showing the level
subdivisions for a single triangle.

application running on the CPU. Consequently, we have
adapted their Generic Adaptive Mesh Refinement (GAMeR)
technique to procedurally create additional inner vertices on-
the-fly.

The remainder of this section is divided into three subsec-
tions. The first subsection discusses refinement patterns
and properties. The second subsection discusses the use of
barycentric points in relation to the heat boundary. The third
subsection brings these concepts together in our deformation
algorithm.

Refinement Patterns and Properties

Although our approach is valid for other polygonal shapes,
we only consider the case of triangular meshes, since that is
what is primarily used in video games. We pre-compute all
of the useful refinement configurations of a single triangle
using a technique called uniform decomposition, in which
the subdivision takes place in all of the cells recursively. We
use an isotropic template that divides each triangle into half
for five recursive levels in depth as illustrated in Figure 3.
This resulting Adaptive Refinement Pattern (ARP for short)
is stored once on the GPU as a vertex buffer object.

Recall that our objective is not to subdivide each and every
triangle in the object. Our aim is to subdivide only when nec-
essary, and prior to deformation. We declare some attributes

Proceedings of the 6th Annual North American Conference on AI and Simulation in Games (GAMEON-NA), pp. 21-26, EUROSIS, Troy, NY, 2011.

22



Attribute Values Description
id Integer Track siblings/parent
SetLevel 1, 2, 3, 4, 5 Depth of the division
Siblings Integer Number of siblings
Parent Integer Parent id
Status −1, 0, 1, 2 Status of the triangle

Table 1: ARP attributes.

for each of the subdivided triangles in Table 1. One of the im-
portant attributes in this set is the status of the triangle. The
values -1, 0, 1, 2 represent the triangle’s status as inactive,
initial, active, and processed respectively. The renderer will
draw only the final ARP of active and processed triangles
generated by each coarse triangle.

After loading the ARP and its attributes to the vertex buffer,
we need to map ARP coordinates to the corresponding coarse
polygon using a displacement map similar to Figure 3. Un-
like (Boubekeur and Schlick 2005), we record the final co-
ordinate set into the GPU since we have yet to deform our
vertices prior to rendering. At this point we apply ARP to
the coarse polygon only if it is eligible to proceed to the next
level of subdivision. This eligibility depends upon the loca-
tion of the heat boundary relative to the triangle.

Barycentric Points & the Heat Boundary

The temperature of a burning object in the real world changes
over both time and space. Temperature increase due to com-
bustion influences the mechanical behavior of the object, and
the thermal conductivity of the object influences the thermal
response.

To speed up computation, we approximate the expansion
of the heat boundary by calculating it around a single
fixed point, following our heat boundary model described
in (Amarasinghe and Parberry 2011b). The approximated
heat boundary expansion is given by:

R2 = | sin(πΘ/∆r) + sin(πΘ) +

ψ((x− x0)2 + (y − y0)2 + (z − z0)2)|,

where R = r + ∆r, the radius r incremented by ∆r in each
∆t time period. The angle Θ is a random value that makes
the expanding heat boundary irregular in shape. The location
of the heat source is (x0, y0, z0). However, the value of heat
index constant ψ from (Amarasinghe and Parberry 2011b),
which is supposed to be a constant that depends only on the
size of the coarse triangles of the model, is no longer fixed.
Therefore, we let the designer set ψ depending on how many
levels of subdivision are planned.

It remains to decide which coarse triangles are eligible for
subdivision. This has to be a function of the expanding heat
boundary. Furthermore, the subdivision has to take place
prior to the deformation process. Our solution is to send

a virtual heat wave through the model prior to the actual
heat boundary expansion. This creates an area in addition
to the three initial heat boundary areas described in Figure 3
of (Amarasinghe and Parberry 2010). Since the introduced
boundary expansion takes place prior to the three original
expanding boundaries (see Figure 4), we can proceed with
the subdivision of qualified triangles before the deformation
process begins.

Since we are using a single source heat boundary, temper-
ature at all points will depend on the distance from the
heat source at (x0, y0, z0). If this point is in the middle of
one of the coarse triangles, the triangle will not be eligible
for subdivision until the virtual heat boundary hits one of
its vertices. To avoid such issues we represent each trian-
gle using barycentric coordinates as follows. Suppose point
P = (x, y, z) is given by:

x = λ1x1 + λ2x2 + λ3x3

y = λ1y1 + λ2y2 + λ3y3

z = λ1z1 + λ2z2 + λ3z3,

where λ1,λ2 and λ3 are area parameters such that λ1 + λ2 +
λ3 = 1.

We need to calculate the barycentric coordinates for non-
eligible triangles only, where eligible triangles are those that
are close to the heat boundary. The following algorithm re-
turns true if coarse triangle T is eligible.

for each coarse triangle T
if T is not eligible then get barycentric point set P

for each barycentric point set P
if P is inside the heat boundary

return true

Deformation

After applying ARP to the eligible triangle, we next apply
deformation techniques. Although our ARP arbitrarily con-
tains triangles of five levels in depth (see Figure 3), this num-
ber can be changed in the obvious fashion by the designer.
Deformation applies only to the final level (in our case, fifth
level) status active triangles. At this point, rendering all lev-
els of triangles in the ARP will be costly and wasteful. In-
stead, we choose which triangles to render using the ARP
attributes listed in Table 1.

The process can be described informally as follows. Initially,
the coarse triangles of the model are considered active (sta-
tus value 1) triangles, and all ARP triangles are initialized
as initial (status value 0) triangles. Each subdivided trian-
gle consists of three siblings and a parent. As our algorithm
proceeds, if one of the child triangles turns active, then the
parent will turn processed (status value 2) until all of its chil-
dren also become status active. Once its children have all
turned active, the parent triangle will change its status from

Proceedings of the 6th Annual North American Conference on AI and Simulation in Games (GAMEON-NA), pp. 21-26, EUROSIS, Troy, NY, 2011.

23



Figure 4: Heat boundary areas and barycentric point sets.

if triangle has SetLevel 5 and Status 0
if triangle is inside the heat boundary

Status := 1
Status of all siblings := 1
Status of parent := 2

if SetLevel < 5 and Status > 0
if sibling’s Status > -1

sibling Status := 1
parent Status := 2

if all children have Status 1 and parent has Status 2
parent Status := -1

Figure 5: Algorithm for computing Status.

Figure 6: The refinement hierarchy and deformation applied
to a 12-triangle model of a box.

processed to inactive (from status value 2 to -1). See Figure 5
for the details.

In our high-polygon deformation algorithm (Amarasinghe
and Parberry 2011b) the displacement of each vertex depends
on the surrounding vertices. Therefore, to apply proper cal-
culation of deformation, we must let the subdivision proceed
a few steps further before applying deformation to the mesh.
By doing so, we are able to calculate the proper strength fac-
tors within the deforming triangles properly. Figure 6 illus-
trates the refinement hierarchy and deformation applied to a
low-polygon model of a box.

LEVEL OF DETAIL

In a game environment, objects located far from the viewer
need not be rendered in as much fine detail as those close
up. A significant speed-up can be obtained by having models
stored at various levels of detail (abbreviated LOD) ranging
from, for example, hundreds of triangles for objects in the
far distance to tens of thousands for close-up objects. These
variants of the model are usually created by the artist, al-
though procedural methods do exist.

Our algorithm allows us to implement LOD for burning ob-
jects by controlling the level of adaptive refinement of the
coarse mesh triangles. We calculate the distance between
object and the player in the CPU and pass it to the GPU as
a parameter. Level adjustment is decided and passed to the
appropriate ARP before rendering.

For a solid object the level of refinement is directly propor-
tional to the distance. However, surface removal and defor-
mation of a burning object makes it slightly more challenging
to maintain a smooth transition between level swaps. Define

Proceedings of the 6th Annual North American Conference on AI and Simulation in Games (GAMEON-NA), pp. 21-26, EUROSIS, Troy, NY, 2011.

24



Polygon Fully Our Speed-up
Count Subdivided Method Factor

10k 84fps 165fps 1.96
15k 76fps 159fps 2.09
20k 63fps 153fps 2.43
50k 48fps 60fps 1.25

Table 2: Frame rate of fully subdivided model versus our
approach.

the burn level of a model as the number of triangles of the
model that have been consumed by fire as in (Amarasinghe
and Parberry 2011b). We then use the following algorithm to
determine whether to render triangle T : Show T if and only
if the number of children of T with higher burn level than T
is ≥ 2, and SetLevel ≥ 5. Figure 7 shows our burning box at
different LODs.

EXPERIMENTS

The images of burning objects shown here and in (Amaras-
inghe and Parberry 2011a) are screenshots from a CUDA im-
plementation of our algorithm applied to a model with 12
triangles. The flames are generated using 2000 fire parti-
cles and 500 smoke particles. The advantage of such a sys-
tem is clear when comparing the resources required to de-
form a completely subdivided model versus deforming a low-
polygon model using our method. Table 2 shows the frame
rates of the animation when our algorithm is implemented in
CUDA on relatively modest hardware; An Intel R©CoreTM2
Duo CPU P8400 @ 2.26GHz processor with an NVidia
GeForce 9800 GTS graphics card. This performance will
of course be much better on the current generation of graph-
ics hardware, but that is not our aim. Our aim is to provide
detail sufficient to trigger willing suspension of disbelief at a
relatively low cost in computation load.

The outcome of these experiments shows that our method
results in doubling the frame rate. Therefore, we believe this
approach is a better alternative than subdividing the complete
model when it comes to deforming low-polygon models.

CONCLUSION AND FURTHER WORK

We have proposed a method for the real-time deformation
and consumption of a low-polygon model during combus-
tion by procedurally generated fire. By doing so, we have
extended our work in (Amarasinghe and Parberry 2011b) to
low-polygon models. We have performed simulation of real-
time deformation and consumption of any model regardless
of the size of the triangles. We have focused on the perfor-
mance with a reasonable amount of realism sufficient to trig-
ger willing suspense of disbelief in the game player. Our sim-
ulations have performed well on a model with low-polygon
count and large triangles. We intend to investigate the exten-
sion of our method to solid models, and to investgate a better

approximation to heat boundary expansion.

REFERENCES

Alliez P.; Ucelli G.; Gotsman C.; and Attene M., 2008. Re-
cent advances in remeshing of surfaces. Shape Analysis
and Structuring, 53–82.

Amarasinghe D. and Parberry I., 2010. Towards Fast, Be-
lievable Real-time Rendering of Burning Objects in Video
Games. Tech. Rep. LARC–2010–04, Laboratory for
Recreational Computing, Dept. of Computer Science &
Engineering, Univ. of North Texas.

Amarasinghe D. and Parberry I., 2011a. Fire Reloaded.
URL http://larc.unt.edu/ian/research/
fire2/.

Amarasinghe D. and Parberry I., 2011b. Towards Fast, Be-
lievable Real-time Rendering of Burning Objects in Video
Games. In Proceedings of the 6th Annual International
Conference on the Foundations of Digital Games. 256–
258.

Borouchaki H.; Laug P.; Cherouat A.; and Saanouni K.,
2005. Adaptive remeshing in large plastic strain with dam-
age. International Journal for Numerical Methods in En-
gineering, 63, no. 1, 1–36.

Boubekeur T. and Schlick C., 2005. Generic mesh
refinement on GPU. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware. ACM, 99–104.

Fan F. and Cheng F., 2009. GPU Supported Patch-Based Tes-
sellation for Dual Subdivision. In 2009 Sixth International
Conference on Computer Graphics, Imaging and Visual-
ization. IEEE, 5–10.

Floater M. and Hormann K., 2005. Surface parameteriza-
tion: A tutorial and survey. Advances in Multiresolution
for Geometric Modelling, 157–186.

Guo X.; Li X.; Bao Y.; Gu X.; and Qin H., 2006. Mesh-
less thin-shell simulation based on global conformal pa-
rameterization. IEEE Transactions on Visualization and
Computer Graphics, 375–385.

He L.; Schaefer S.; and Hormann K., 2010. Parameterizing
subdivision surfaces. ACM Transactions on Graphics, 29,
no. 4, 1–6.

Hormann K.; Labsik U.; and Greiner G., 2001. Remesh-
ing triangulated surfaces with optimal parameterizations.
Computer-Aided Design, 33, no. 11, 779–788.

Kovacs D.; Mitchell J.; Drone S.; and Zorin D., 2009. Real-
time creased approximate subdivision surfaces. In Pro-
ceedings of the 2009 Symposium on Interactive 3D Graph-
ics and Games. ACM, 155–160.

Proceedings of the 6th Annual North American Conference on AI and Simulation in Games (GAMEON-NA), pp. 21-26, EUROSIS, Troy, NY, 2011.

25



Figure 7: Levels of detail for a burning object provided by our method.

Peyré G. and Cohen L., 2006. Geodesic remeshing using
front propagation. International Journal of Computer Vi-
sion, 69, no. 1, 145–156.

Schive H.; Tsai Y.; and Chiueh T., 2010. GAMER:
A graphic processing unit accelerated adaptive-mesh-
refinement code for astrophysics. The Astrophysical Jour-
nal Supplement Series, 186, 457.

Settgast V.; Müller K.; Fünfzig C.; and Fellner D., 2004.
Adaptive tesselation of subdivision surfaces. Computers
& Graphics, 28, no. 1, 73–78.

Wicke M.; Ritchie D.; Klingner B.; Burke S.; Shewchuk J.;
and O’Brien J., 2010. Dynamic local remeshing for elasto-
plastic simulation. ACM Transactions on Graphics, 29,
no. 4, 1–11.

BIOGRAPHY

DHANYU AMARASINGHE is a native of Sri Lanka.
He is currently a PhD student in the Department of
Computer Science and Engineering at the University of
North Texas. His research interests include graphics for
game development, particularly the real-time deforma-
tion and consumption of virtual objects by procedural fire.

He can be contacted at dhanyu@gmail.com. His home
page is http://dhanyu.com/.

IAN PARBERRY was born in London, England and emi-
grated as a child with his parents to Brisbane, Australia. Af-
ter obtaining his undergraduate degree there from the Uni-
versity of Queensland he returned to England for a PhD from
the University of Warwick. He has worked in academia in
the US ever since. He is currently a full Professor in the De-
partment of Computer Science and Engineering at the Uni-
versity of North Texas where he recently stepped down from
a 2-year term as Interim Department Chair. A pioneer of the
academic study of game development since 1993, his under-
graduate game development program was ranked in the top
50 out of 500 in North America by The Princeton Review in
2010. He is on the Editorial Boards of the Journal of Game
Design and Development Education, IEEE Transactions on
Computational Intelligence and AI in Games, and Entertain-
ment Computing, and he serves as the Secretary of the So-
ciety for the Advancement of the Science of Digital Games,
which organizes the Annual Foundations of Digital Games
conference. He is the author of 6 books and over 80 articles
over 30 years’ experience in academic research and educa-
tion. His h-index is 18 and his Erdös number is 3. He can
be contacted at ian@unt.edu or on Facebook. His home
page is http://larc.unt.edu/ian.

Proceedings of the 6th Annual North American Conference on AI and Simulation in Games (GAMEON-NA), pp. 21-26, EUROSIS, Troy, NY, 2011.

26




