
A SERVER-SIDE FRAMEWORK FOR THE EXECUTION OF
PROCEDURALLY GENERATED QUESTS IN AN MMORPG

Jonathon Doran Ian Parberry
Dept. of Computer Science and Information Systems Dept. of Computer Science and Engineering

Bradley University University of North Texas
jhdoran@bradley.edu ian@unt.edu

KEYWORDS
MMO, procedural content generation

ABSTRACT

We describe a framework for executing procedurally gener-
ated quests implemented in the MMORPG Everquest using
the Open Source EQEmu Everquest server. Quests play out
at run-time using a collection of triggers, which consist of
a testable game state condition and a script that is to be run
when the condition is satisfied. We describe the interface
between the quest generator and the server which enables
the seamless integration of the procedurally generated quests
within the existing server architecture. To demonstrate how
this process takes place in real time, we analyze a nontriv-
ial procedurally generated quest and describe the key server-
controlled actions that derive from it.

INTRODUCTION

Massively Multiplayer Online Role Playing Games (com-
monly abbreviated MMORPG) pose a significant challenge
for procedural content generation. Of the content which
might be procedurally generated, the quest is perhaps the
most difficult. Quests are tasks assigned to players in the
game, combining narrative elements and problem solving
with combat and survival in a hostile world. Creating these
quests requires the creation of in-game agents, items, and di-
alog. A quest generator must inform the game engine about
which tasks need to be performed by both the player and
the engine, what the criteria for success is, and when events
should occur.
Our quest generator is novel in that it has been integrated
into an actual AAA MMO, rather than generating quests for
a standalone single-user game. This is the market we feel
is most in need of large volumes of content. While we be-
lieve that our generator would generate content suitable for
any MMO, we selected Everquest as our target demonstra-
tion system. The presence of an open-source server emulator
(EQEmu) was a significant factor in selecting this game. We
will examine the steps needed to support Everquest, with the
understanding that other games could be supported with dif-
ferent post-processing.
Procedural quest generators place a number of requirements
on a game server. These can arise from the need to have
the generator run with little or no human intervention, the

need to introduce new quests into a world without break-
ing any existing functionality, and the need to remove quests
without negative consequences. We demonstrate the design
and implementation of a procedural quest generator for the
MMORPG Everquest using an Open Source emulated server
and an Everquest client released by Sony Online Entertain-
ment via Steam in 2010 (See Figure 1). We believe that our
framework is general enough to be adaptable to other server
architectures provided certain requirements are met.
The remainder of this paper is divided into six sections. In
the section “RELATED WORK” we consider related work.
In the section “QUEST GENERATION” we briefly describe
the procedural quest generator. In the section “SERVER RE-
QUIREMENTS” we discuss the specific requirements that
the Everquest server imposes on the execution of procedu-
rally generated quests at run-time. In the section “THE
SERVER INTERFACE” we describe the interface between
the quest generator and the Everquest server. In the sec-
tion “THE QUEST & TRIGGER MANAGERS” we show
how we were able to meet the server’s requirements and
control quest execution. In the section “AN EXAMPLE
QUEST” we analyze a sample procedurally generated quest
and describe how the server is able to make the quest play
out in real time.

RELATED WORK

MMORPGs are persistent interactive worlds shared by many
players. Players face many challenges in these games, among
them are structured activities known as quests. Quests con-
sist of objectives, tasks, and success or failure conditions
(Ashmore and Nitsche, 2007; Doran and Parberry, 2011).
Dickey notes that players strategize, collaborate, and plan
their solutions to these challenges as a major form of game-
play (Dickey, 2007). Rewards from quests are often the pri-
mary motivation for players to engage in gameplay, and in
these cases a compelling story is not required. Quests can
play a significant role in content delivery by providing narra-
tive and guiding player involvement in the world ((Grey and
Bryson, 2011; Joslin et al., 2006; Smith et al., 2011; Tomai
et al., 2012a). Quests can be used to relate epic stories (Bate-
man and Boon, 2005). One of our long-term goals is to de-
termine if improved storylines can result in players focusing
as much on the storyline as the reward.
There is no intrinsic meaning for quests, only potential mean-

Proceedings of the 16th Annual European Conference on Simulation and AI in Computer Games 
(GAMEON 2015), pp, 103-110, Amsterdam, The Netherlands, EUROSIS, December 2015.

103



ing (Tronstad, 2002–2003), which means that discovery of
this meaning is a task for the player. Tronstad also notes that
as quests are a search for meaning, once solved they can-
not be performed again, since we only have one opportunity
to experience a quest for the first time. To maintain a body
of novel content, one must constantly introduce new content
into the game. Procedural quest generation is a logical solu-
tion, if the generators are capable of providing the meaning
of which Tronstad speaks (Ashmore and Nitsche, 2007; Ky-
bartas, 2013; Reed et al., 2011; Sullivan et al., 2011; Tomai
et al., 2012b; Zook et al., 2012).
Aarseth’s analysis of the quests in Everquest has sug-
gested that the player’s task is finding “one acceptable
path” (Aarseth, 2004), which is evidence that player agency
is limited(Wardrip-Fruin et al., 2009). We can posit that the
introduction of additional paths would be of great benefit to
playability.
The reduction of resource requirements is important for ar-
chitectures which need to scale, such as those found in
MMORPGs. In the study of computer networks we have
seen how explicit notification of relevant events can reduce
unwanted traffic, leading to less resources needed to process
this traffic (Smed et al., 2002). The reduction of traffic in net-
works is an appropriate model for reducing event handling
in a game. In both situations we consider solicited versus
unsolicited event notification and handling. This publish-
er/subscriber pattern was also discussed in terms of clien-
t/server communications (Caltagirone et al., 2002). We have
adopted this technique by requiring quests to subscribe to
certain types of events at appropriate points during their exe-
cution.

QUEST GENERATION

We generate quests using a technique previously described
by the authors (Doran and Parberry, 2011), starting with an
NPC and selecting a strategy template appropriate for its mo-
tivation. These templates are part of a plan library, and can
to be expanded to the desired level of complexity. Complica-
tions and follow-on quests can be added to a template, caus-
ing more strategies to be used. These new strategies can also
be expanded as needed.
The generator was modified slightly to assign a number
of points to strategies representing their difficulty, and ran-
domly dividing these points among new strategies during the
expansion process. If we view the set of strategies used as a
graph, we see a tree structure growing from the original root
goal. Points over a minimum value are allocated randomly to
leaves, which then add child nodes that become new leaves.
Points are consumed by each of the strategy templates, so the
initial point total limits the size of the generated tree.
This differs from planning algorithms, as we start with a vi-
able solution in the form of a trivial goal, and add additional
subgoals while preserving the overall strategy; thereby by
adding obstacles to the path the player must take to satisfy the
original goal. This might be done by making a needed asset
hard to obtain, relying on knowledge that is not obvious or

Figure 1: A screen shot of the Everquest client

commonly known. This process will continue as long as nec-
essary to consume the points allocated to the new branches.
Planning algorithms, on the other hand, start with an initial
state and a goal and attempt to generate a graph that connects
the initial state to the goal state. There is no guarantee that a
viable solution exists, and computationally expensive search
techniques must be employed to find any solution. Unlike
planning solutions, our approach builds solutions in constant
time.
If quest generation fails, which might be due to requiring
more points for a branch than are available or exhausting
available world assets, the quest generator employs back-
tracking over a finite set to attempt an alternate solution. In
practice we found that the limiting factor in creating large
quests is the size of the world knowledge base. For example,
a small, finite set of world locations is inadequate unless the
generator can reuse locations, but it is preferable to avoid this
reuse to help keep quests believable while preserving variety.
Novelty in procedurally generated content is a very impor-
tant quality, as it creates the variety of content which players
desire (Doran and Parberry, 2010). This variety is obtained
by changing the subquests (or nodes) created, and the details
of each node, such as assets and dialog. By changing the dis-
tribution of points among quest nodes, we permit different
tree topologies to be created and change the difficulty of the
subquests generated with each node. Asset selection (such
as NPCs and items) can also have a significant impact on
the structure and appearance of a quest. NPCs in particular
have motivations which limit the types of subquests possible
from the node referencing the NPC. In general, the number
of unique combinations of assets and nodes increases signif-
icantly with the number of points allocated.

SERVER REQUIREMENTS

Our preliminary work on quest generation dealt with the gen-
eration of quests in isolation (Doran and Parberry, 2011).
Interfacing a quest generator to a large, commercial quality
MMORPG game engine is a complex task that taxes our ab-
stractions to the limit.
We selected the game Everquest for this purpose because the
client could easily be purchased, and there is an available

Proceedings of the 16th Annual European Conference on Simulation and AI in Computer Games 
(GAMEON 2015), pp, 103-110, Amsterdam, The Netherlands, EUROSIS, December 2015.

104



Figure 2: The EQEmu zone server responds to game events
by having an event handler send a notification to a script

handler, which selects, initializes, and runs a script

open-source server emulator EQEmu.
An EQEmu quest is implemented as a set of Perl or Lua
scripts associated with the corresponding game assets. Each
script may declare a handler for any of the supported events
and, by interacting with server objects, change the state of
the world. To simplify quest management, we enforced the
requirement that each quest be implemented with a single
script that can be added or removed from the server without
impacting any other quests.
The run-time support for the quests created by our gener-
ator makes use of information stored in a database. Each
quest is represented by a single file containing the informa-
tion needed to create the script and perform the necessary
database updates. We chose to implement this file as an
XML document. A quest can therefore be shared with an-
other server by sharing the XML file created by our genera-
tor.
The run-time support for quests will require information on
game events as they occur. The exact events, and the data
associated with them, will of course be different from game
to game. In general an event will correspond to some state
change in the world, for example, this could be a non-player
character (NPC) entering or leaving the world, an item be-
ing acquired, or the player visiting some location. The run-
time support for quests created by our generator requires cus-
tom event handling. The previous EQEmu server generated
events by sending an enumeration and several parameters to
script parsers, which then created an appropriate initial state
for a event handler script and then called one of the scripts
associated with an asset (see Figure 2).
This sequence of actions requires that the code that notifies
the system of an event must know the type of asset that will
handle the event; additionally, any optional parameters must
be passed to the script parsers. The resulting event handling
code is spread over several classes, and knowledge of how a
given event is to be be handled is required of the code that
raises the event. Our approach is similar, but stores all infor-
mation associated with an event into an Event object which
is passed to the Trigger Manager. This simplifies the script
interface, and provides a general event interface which can
easily be extended if new events are desired.

Figure 3: We modify the EQEmu zone server so that our
quest handler has the first opportunity to respond to game

events

Figure 4: Getting the quest from the quest generator to the
quest database

Events are represented in EQEmu by discrete objects that are
wholly self-contained. Each event is passed into common
event handling code which determines the proper event han-
dler and makes the necessary calls to process it. The system
can support as many custom event handlers as necessary. Our
run-time is given the first chance to handle each event, and
in the case of failure, the event will be passed back to the
legacy asset scripts (see Figure 3). Multiple quest systems
can coexist at run-time without risk of interference.

THE SERVER INTERFACE

As described above, our quest generator produces a single
XML document for each quest, which must then be loaded
onto a game server. We implemented a Java quest im-
porter (see Figure 4) that processes these XML documents
and, based on the information inside, either adds or removes
a quest from the server. This application creates the run-
time scripts based on the XML elements and updates the
game server database. These operations are obviously game-
dependent, but the principle is common to all MMORPG
engines: The quest generator must communicate quests to
the server using some combination of flat files or databases.
Our XML format can in principle be easily extended to other
forms of data storage used by a game. Notice that although
the generator supplies the structure of the quest, some input
is required from a human designer to customize things such
as NPC dialog and the names of NPCs and items.
For convenience we define a structure called a trigger, which

Proceedings of the 16th Annual European Conference on Simulation and AI in Computer Games 
(GAMEON 2015), pp, 103-110, Amsterdam, The Netherlands, EUROSIS, December 2015.

105



consists of a test to be applied against the game state and a
script to be executed if the test succeeds (see Figure 6, bot-
tom left). For example, the test could specify player arrival
at a certain location, and the script could result in an NPC at
that location giving an important object to the player. While
in principle the firing condition may be an arbitrary Boolean
formula involving any number of game state variables, cer-
tain triggers are more common (see Table 1). The null trig-
ger, which fires immediately upon creation, is a useful way
to compose a sequence of actions.

<?xml version=”1.0” encoding=”utf−8”?>
<quest>
< title lang=”en”>graph 0</title>
<id>5a729d34−30c3−11e4−a10d−001d7d0a5e7c</id>

<node>
<name>Root</name>
<task>gather parts for a Simple Pauldron</task>

<assets>
<item>
<id>\$item 3</id>
...

</item>
...

</assets>

< triggers>
<match>
<id>hail 1</id>
<zone>394</zone>
<sequence>0</sequence>
<regex lang=‘‘en’’>\bhail\b</regex>
<Perl> ... </Perl>
<task>speak with Blacksmith Jones</task>
<repeatable>

</match>
...

</ triggers>
...

</node>
...

</quest>

Figure 5: Structure of a quest file

Figure 5 shows the structure of the XML file produced by
the generator. Each quest is given a title, which is used by
the importer to display a list of quests. A globally unique
identifier (GUID) is assigned by the generator, to establish
a unique namespace for names and IDs. When a quest is
loaded onto a server, it is assigned a locally unique identifier
(such as a counter incremented for each unique quest loaded),
and the GUID and title are associated with this identifier.
All database modifications are logged with the correspond-
ing quest identifier, allowing the importer to later remove the
quest.

Type Firing Condition
null immediately
item item is created
converse player conversation matches regular expression
give player gives an item to an NPC
proximity player enters a certain area
acquire item enters player’s inventory
subquest subquest completes

Table 1: Some common trigger types and their firing
conditions

Figure 6: A Quest Graph node (top left), a trigger (bottom
left), and a quest graph (right)

Our generator represents quests as graphs, which structure
can be seen within the XML document. The Quest Graph
consists of a set of nodes with triggers that correspond to
graph edges (see Figure 6, right). Each node is assigned a
name and an optional task text. The task text can be used
within a game to identify quest steps, as we do with Ev-
erquest’s quest journal (see Figure 7). Each node contains
a set of assets that need to be created at runtime, and a set
of triggers (see Figure 6, top left). The first use of an asset
causes an asset record to be written, and further use of the
asset can be performed by reference to the asset id. Game-
specific properties are included in this asset record, but we
assume that in general any game will assign some set of
properties to any object in the world. Our importer creates
database entries for quest-specific assets, introducing them
into the game and allowing characters to interact with them.
If a quest is later removed, the database entries for interme-
diate (non-reward) items are also removed and these items
disappear from the world.
We can consider each quest to be a finite state machine in
which the triggers are the events that can change its state.
For example, trigger hail 1 has the type “match” which re-
quires player speech to match a regular expression given in
the trigger. In Figure 5 we see a trigger which requires the
word “hail” to be spoken by the player before the quest will
advance. This is a typical trigger word used in Everquest.
The Perl element contains functions written by the genera-
tor that will be executed if the regular expression is matched,
possibly providing a spoken response or other NPC action.
This combination of an arbitrary set of triggers and a very
capable scripting language can allow any event which might
occur in a game to be paired with any server-side responses

Proceedings of the 16th Annual European Conference on Simulation and AI in Computer Games 
(GAMEON 2015), pp, 103-110, Amsterdam, The Netherlands, EUROSIS, December 2015.

106



Figure 7: A screen shot of the Everquest journal

that might be required. All game-specific logic is contained
in the meta-rules in the quest generator, which are separate
from the general rules which might apply to any game.
Each trigger is assigned a sequence number that indicates
the order in which triggers are required to fire. It is possi-
ble to have several triggers with the same sequence number,
and therefore able to be performed at the same point in time.
That is, triggers are partially ordered and allow the player to
choose which parts of the quest they will work on next. In
the section ‘̀THE QUEST & TRIGGER MANAGERS” we
will show how these sequence numbers are used at run-time.
Triggers may be marked as repeatable and/or optional, allow-
ing different combinations of trigger firings to be specified
by the generator. Repeatable triggers are needed at points
where the player may restart the quest following a failure
to complete a later quest stage. For example, a repeatable
trigger can be used to permit the initial conversation with an
NPC to be repeated if the player fails to advance beyond the
first checkpoint. Without checkpoints (and the corresponding
rollback logic), the player is committed to either complete
the next quest stage or fail the quest. Optional triggers are for
events that might occur and necessitate a response, but which
are not required to successfully complete the quest. Node, as-
set, and trigger data are stored in a database for our Everquest
server to access. The Perl functions are collected into a single
Perl script, which exists in a quest-specific namespace. This
means that function names only need to be quest-unique,
simplifying the process of working with multiple generated
quests.

THE QUEST & TRIGGER MANAGERS

Although the emulated Everquest server was initially capable
of processing events and performing quests, it was not able to
work with quests produced by our generator. Modifications
were made to the server to allow it to execute the procedu-
rally generated quests loaded by the process described in the
section “THE SERVER INTERFACE”. We created a quest
manager which provides an interface to scripts, and manages
client state, timers, and registrations of world entities that
need to be notified when global events (not associated with

Figure 8: The quest manager manages all of the things
associated with a quest, including client state, triggers,
graph nodes, timers, and world entities such as places,

agents, and assets

any client) occur (see Figure 8). For example, NPCs that
move along a route of waypoints need an event to be gen-
erated when a waypoint is reached. This event triggers the
manager to assign the NPC the next waypoint in the route.
The quest manager also has the ability to checkpoint and roll-
back quest state in the event that part of a quest needs to be
repeated. For example, if a player obtains an item needed
to complete a quest and then manages to somehow lose it,
the quest state is rolled back to the point prior to the player
obtaining the item. The quest manager keeps track of modifi-
cations to the local world state, so that these can be removed
when the quest advances or the player leaves the zone. One
of the local modifications supported is selective visibility,
which makes assets only visible to players associated with
the quest. Association means that the player has the quest,
and is at the proper point in the quest to see the asset, or that
the player is grouped with someone meeting those require-
ments. This allows groups of players to cooperate on quests
without affecting other players. The quest manager was im-
plemented as a singleton pattern, and therefore exists in its
own globally accessible namespace.
Cache managers were created for nodes and triggers that are
active in the world. An active node or trigger is one with
at least one player at the corresponding graph node, or wait-
ing to complete the trigger. This optimization allows events
to be screened against active objects rather than all objects
associated with a quest.
The trigger manager handles all events generated by the
game server, and attempts to match them with active trig-
gers (see Figure 9). The match occurs when the event meets
all of the firing requirements, and there is at least one player
with the trigger active. Upon detecting a match, the trigger
is said to fire and the trigger-specific script is executed. The
trigger may or may not complete as a result of this firing.
Some triggers require multiple firings before they complete,
such as one might find when a player is asked to collect sev-
eral objects in a set. Each collection advances the state of

Proceedings of the 16th Annual European Conference on Simulation and AI in Computer Games 
(GAMEON 2015), pp, 103-110, Amsterdam, The Netherlands, EUROSIS, December 2015.

107



Figure 9: When notified of an event by the EQEmu event
handler, the trigger manager determines which triggers
should fire by testing them against the game state, then

executes their scripts

the trigger, until the terminal state is reached and the trigger
completes. Upon completion the node associated with the
trigger is notified, and the trigger is deactivated. If there are
no outstanding triggers required by this node, the node can
then complete and advance the quest state to the node at the
next sequence. When the terminal node in the graph com-
pletes, the quest ends. It is assumed that the terminal node
takes care of any rewards associated with the quest.

AN EXAMPLE QUEST

The capabilities of this system can be seen by viewing a sam-
ple quest generated by our generator and playable in-game in
Everquest. The overall structure of the nodes in the quest is
shown in Figure 10, where the quest starts at the Root node,
and the player is required to complete subquests represented
by other graph nodes either as prerequisites or postrequisites.
Triggers are not shown in this graph, but may be inferred. For
example, if a node requires the player to acquire some item,
the corresponding trigger would watch for this item to enter
the player’s inventory. In this example quest, all nodes repre-
sent follow-on quests to be completed as part of, or after the
preceding node. The quest starts with the character Black-
smith Jones asking the player to gather materials and make a
piece of armor. This requires the player to obtain metal pan-
els and a venom sac from a poisonous snake. These ingredi-
ents are determined randomly, and the recipe is only usable
by the player performing the quest. The player is directed
to see Councilmember Ithakis for the metal panels, and the
Councilmember offers to give the player the panels in return
for a favor. The Councilmember wants the players to locate a
lucerne leaf (another ingredient which could be used to make
armor), and suggests that the player ask Farmer Jones for
help. The farmer is happy to give the player a leaf, which is
then turned over to the Councilmember. The players are then
asked to deliver a message to a character named Nech Ilya,
saying that Councilmember Ithakis has the lucerne he needs.
After this is completed, the player receives the metal plates.

Figure 10: The structure of a sample quest

Blacksmith Jones suggests greenscale vipers might be a good
source of venom sacs, and the players must find some of
these snakes in the world and kill them until they find one
with a rare intact venom sac. With this item, they are able to
create the custom armor piece for the Blacksmith, and earn
their reward.
Generation of this quest requires the selection of appropriate
tasks each NPC would like performed, and the creation of
custom items for the quest. Special metal plates and venom
sacs are only available to the player running the quest, or any
character in the same group or raiding party as the player
running the quest. Custom character dialog is created for
each participating character, as well as control records which
bring the items and characters into the world at the appropri-
ate time.
The quest plays out as follows:

1. When the player enters the Crescent Reach zone, a
converse trigger is created, requiring the player to hail
Blacksmith Jones.

2. The player hails Blackmith Jones, activating the con-
verse trigger.

3. Blacksmith Jones asks the player to help gather materi-
als for a piece of armor that he is making.

4. Several subquest triggers are activated, causing null
triggers at the start of each subquest to fire.

(a) The null triggers deliver instructions for each sub-
quest.

Proceedings of the 16th Annual European Conference on Simulation and AI in Computer Games 
(GAMEON 2015), pp, 103-110, Amsterdam, The Netherlands, EUROSIS, December 2015.

108



5. Blacksmith Jones suggests that the player ask a Coun-
cilmember for help getting metal panels.

(a) An item trigger is created and activated requiring
6 metal panels.

6. Councilmember Ithakis demands that the player run an
errand (perform a subquest) in return for the metal.

(a) A subquest trigger is created and activated.

7. Councilmember Ithakis asks the player to bring him a
lucerne leaf, which is used as an armor temper.

(a) A null trigger activates and fires, causing the coun-
cil member to ask for a lucerne leaf.

8. Councilmember Ithakis directs the player to Farmer
Joen, who gives the player the leaf.

(a) A collection subquest is activated, which activates
another null trigger which in turn directs the player
to Farmer Joen.

(b) A converse trigger is activated, looking for the
player to mention “need” to Farmer Joen.

(c) When the player says the magic word, the con-
verse trigger fires causing Farmer Joen to give the
player a leaf.

(d) A give trigger activates, requiring the player to de-
liver the leaf to Councilmember Ithakis.

9. Councilmember Ithakis asks the player to tell an NPC
named Nech Ilya about finding lucerne leaves.

(a) Councilmember Ithakis demands that the player
inform Nech Ilya that he (Councilmember Ithakis)
now has a lucerne leaf.

(b) A subquest trigger activates, which in turn acti-
vates a proximity trigger around the area where
Nech Ilya will appear.

10. The player must find Nech Ilya, and speak with him.

(a) When the player enters the area covered by the
proximity trigger, it fires

(b) A signal is scheduled which will spawn Nech Ilya.
(c) Another signal is scheduled, which will periodi-

cally print a random tracking message and then
reschedule itself.

(d) Eventually Nech Ilya spawns, and all of the signals
are canceled.

(e) A converse trigger is activated.
(f) When the player hails Nech Ilya, the converse trig-

ger fires. Nech Ilya thanks the player, and the sub-
quest completes.

11. The next time the player meets him, Councilmember
Ithakis gives them the metal panels.

(a) A null trigger fires, causing Councilmember
Ithakis to deliver the message.

12. Blacksmith Jones suggests that the player hunt green-
scale vipers to obtain a venom sac.

(a) A null trigger fires, causing Blacksmith Jones to
deliver the message.

(b) An acquire trigger is activated, waiting for 1 snake
venom sack to enter the player’s inventory.

13. The player must locate these snakes and begin killing
them. The snakes will rarely have an intact venom sac
once killed.

(a) When a venom sac enters the inventory, the ac-
quire trigger fires and the subquest completes.

14. The player delivers the materials to Blacksmith Jones,
who makes the armor piece.

15. Blacksmith Jones gives the new armor piece to the
player, and asks that they deliver it to an NPC named
Akins.

(a) A give trigger activates, waiting for the player to
give Akins the armor piece.

16. The player finds Akins and gives him the armor.

(a) When the player gives Akins the armor, the give
trigger completes, and the subquest completes.

17. Upon returning to Blacksmith Jones, the quest com-
pletes and the Blacksmith rewards the player.

CONCLUSION AND FUTURE WORK

We have demonstrated how procedurally generated quests
can be integrated into Everquest. This work was done in sup-
port of our earlier quest generation research, as it establishes
some of our earlier claims of generality. This is the first case
we are aware of where procedural quest generation was ap-
plied to a AAA MMORPG. We believe that most if not all
MMORPGs require this level of quests. Our generator cre-
ates quests that are playable within an existing game, requir-
ing only that the quest is imported into the game server. In
its current state, the framework requires some input from a
human designer in the form of character names and dialog,
which suggests that we explore dialog generation techniques.
The current generator creates boilerplate names and dialog,
but this is the bare minimum needed for the quest to func-
tion. At the same time we observe that while a narrative can
be written to explain the quest graph, we suspect that players
might prefer a more traditional story arc.
We would very much like to provide evaluation of this sys-
tem in future work, after we have resolved several technical
issues with measurement.

REFERENCES

Aarseth E., 2004. Quest Games As Post-Narrative Discourse.
Narrative Across Media: The Languages of Storytelling,
361–376.

Ashmore C. and Nitsche M., 2007. The Quest in a Gener-
ated World. In Proc. 2007 Digital Games Research As-
soc.(DiGRA) Conference: Situated Play. 503–509.

Proceedings of the 16th Annual European Conference on Simulation and AI in Computer Games 
(GAMEON 2015), pp, 103-110, Amsterdam, The Netherlands, EUROSIS, December 2015.

109



Bateman C. and Boon R., 2005. 21st Century Game Design
(Game Development Series). Charles River Media, Inc.,
Rockland, MA, USA. ISBN 1584504293.

Caltagirone S.; Keys M.; Schlief B.; and Willshire M.J.,
2002. Architecture for a Massively Multiplayer Online
Role Playing Game Engine. Journal of Computing Sci-
ences in Colleges, 18, no. 2, 105–116.

Dickey M.D., 2007. Game Design and Learning: A Con-
jectural Analysis of How Massively Multiple Online Role-
playing Games (MMORPGs) Foster Intrinsic Motivation.
Educational Technology Research and Development, 55,
no. 3, 253–273.

Doran J. and Parberry I., 2010. Controlled procedural ter-
rain generation using software agents. IEEE Transactions
on Computational Intelligence and AI in Games, 2, no. 2,
111–119.

Doran J. and Parberry I., 2011. A Prototype Quest Genera-
tor Based on a Structural Analysis of Quests from Four
MMORPGs. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games.
ACM, 1–8.

Grey J. and Bryson J.J., 2011. Procedural Quests: A Focus
for Agent Interaction in Role-Playing Games. In Proceed-
ings of the AISB 2011 Symposium: AI & Games. Univer-
sity of Bath, 3–10.

Joslin S.; Brown R.; and Drennan P., 2006. Modelling Quest
Data for Game Designers. In Proceedings of the 2006
International Conference on Game Research and Devel-
opment. Murdoch University, 184–190.

Kybartas B., 2013. Design and Analysis of ReGEN. Ph.D.
thesis, McGill University.

Reed A.A.; Samuel B.; Sullivan A.; Grant R.; Grow A.;
Lazaro J.; Mahal J.; Kurniawan S.; Walker M.A.; and
Wardrip-Fruin N., 2011. A Step Towards the Future of
Role-Playing Games: The SpyFeet Mobile RPG Project.

In Proceedings of the Seventh Artificial Intelligence and
Interactive Digital Entertainment Conference.

Smed J.; Kaukoranta T.; and Hakonen H., 2002. Aspects of
Networking in Multiplayer Computer Games. Electronic
Library, The, 20, no. 2, 87–97.

Smith G.; Anderson R.; Kopleck B.; Lindblad Z.; Scott L.;
Wardell A.; Whitehead J.; and Mateas M., 2011. Situating
Quests: Design Patterns for Quest and Level Design in
Role-Playing Games. In Interactive Storytelling, Springer.
326–329.

Sullivan A.; Mateas M.; and Wardrip-Fruin N., 2011. Making
Quests Playable: Choices, CRPGs, and the Grail Frame-
work. Leonardo Electronic Almanac.

Tomai E.; Salazar R.; and Salinas D., 2012a. A MMORPG
Prototype for Investigating Adaptive Quest Narratives and
Player Behavior. In Proceedings of the International Con-
ference on the Foundations of Digital Games. ACM.

Tomai E.; Salazar R.; and Salinas D., 2012b. Adaptive
Quests for Dynamic World Change in MMORPGs. In Pro-
ceedings of the International Conference on the Founda-
tions of Digital Games. ACM, 286–287.

Tronstad R., 2002–2003. A Matter of Insignificance: The
MUD Puzzle Quest as Seductive Discourse. CyberText
Yearbook.

Wardrip-Fruin N.; Mateas M.; Dow S.; and Sali S., 2009.
Agency Reconsidered. Breaking New Ground: Innovation
in Games, Play, Practice and Theory Proceedings of Di-
GRA 2009.

Zook A.; Lee-Urban S.; Riedl M.O.; Holden H.K.; Sottilare
R.A.; and Brawner K.W., 2012. Automated Scenario Gen-
eration: Toward Tailored and Optimized Military Training
in Virtual Environments. In Proceedings of the Interna-
tional Conference on the Foundations of Digital Games.
ACM, 164–171.

Proceedings of the 16th Annual European Conference on Simulation and AI in Computer Games 
(GAMEON 2015), pp, 103-110, Amsterdam, The Netherlands, EUROSIS, December 2015.

110




