
Subhunt: A Submarine Action Game

 Ian Parberry1
Department of Computer Sciences

University of North Texas

William R. Pensyl2
School of Visual Arts

University of North Texas

October 1997

Abstract
Subhunt is a 2.5D, sprite based, real-time, first-person, single-player
submarine action game produced by faculty and students at the
University of North Texas. Players find themselves piloting a
submarine with the task of locating and destroying enemy shipping
while managing critical resources and trying not to get killed. Visual
and audio cues create the illusion of action that allows the player to
become completely immersed in the Subhunt virtual world.

1 Author’s address: Dept. of Computer Sciences, University of North Texas, P.O. Box 311366, Denton, TX,
76203-1366. Email: ian@cs.unt.edu. URL: http://hercule.csci.unt.edu/ian.
2 Author’s address: School of Visual Arts, University of North Texas, P. O. Box 305100, Denton, TX, 76203.
Email: pensyl@art.unt.edu.

1 Introduction

Subhunt is a 2.5D, sprite based, real-time, first
person, single-player submarine action game
produced by a multidisciplinary team of faculty and
students at the University of North Texas. Players
find themselves piloting a submarine with the task of
locating and destroying enemy shipping while
managing the resources of air, torpedoes, battery
charge, and diesel fuel. Visual and audio cues create
the illusion of action that allows the player to become
completely immersed in the Subhunt virtual world,
which can be seen in the sample screenshots shown
in Appendix A.

The main body of this manuscript is divided into six
sections, each of which is divided into subsections.
Section 2 explains some basic production issues.
Section 3 describes the sound, music, and artwork.
Section 4 covers some of the more important code
design issues. Section 5 is devoted to a discussion of
the AI used by the enemy ships. Section 6 describes
some of the graphics tricks used to increase speed.
Section 7 describes the properties of the virtual world
in which the game is played. We conclude with
pointers to more information on Subhunt, and two
Appendices. Appendix A contains some screen
shots, and Appendix B contains diagrams of the
control panel and lists of keyboard commands.

2 Production
Subhunt was produced by faculty and students in the
Department of Computer Sciences, the School of
Visual Arts, and the College of Music at the
University of North Texas. This section discusses
some basic production issues. Section 2.1 discusses
our motivation in creating a computer game. Section
2.2 describes our target architecture, and the reasons
for choosing it. Section 2.3 describes our target
audience. Section 2.4 outlines our marketing
strategy. Finally, Section 2.5 details student
participation in the project.

2.1 Motivation
What business does a university have in producing a
commercial computer game? Our primary goal is to
establish UNT as a place where game programmers
and artists can learn and advance the tools of their
trade. The production of Subhunt is a strategy that
contributes to this goal in the following ways:
• It provided the authors of this paper with hands-

on experience in the production of a computer
game, from initial design through to shipping the
final product.

• It provided the students engaged in the project
with hands-on experience that will help them to
find jobs in the computer game industry.

 1

mailto:ian@cs.unt.edu
mailto:ian@cs.unt.edu

• It is an ongoing experiment in an unconventional
funding source. Government funding for basic
and applied research is on the decline, and
industry sources are less willing to contribute
money without concrete results. While it is
unlikely that Subhunt will bring in significant
funds, it will demonstrate our ability to see a
project through to completion on a very limited
budget3.

2.2 Target Architecture
We chose for our target architecture the most popular
platform at the start of the project in 1995: the Intel
processor under DOS (or in a DOS box under
Windows 95). The Soundblaster sound card from
Creative Laboratories is supported. Game input can
come from several sources:
1 From the keyboard. The default keyboard

assignment (see Table 3 and Table 4 in
Appendix B) can be changed by the user and
saved for future use.

2 From the joystick. The joystick controls the
rudder and ailerons for horizontal and vertical
movement respectively. Up to four buttons are
supported.

3 From the mouse, which can be used in one of
four modes:

3.1 Finger mode, in which the mouse is used to
press buttons on the control panel.

3.2 Controlling the rudder (left to right motion)
and throttle (up and down motion).

3.3 Controlling the rudder (left to right motion)
and ailerons (up and down motion).

3.4 Controlling the rudder only (left and right
motion).

Custom device drivers were written for each device.

The code consists of 28000 lines of C++ and 2000
lines of assembly code. The executable was created
with the Watcom C/C++ compiler, Version 10.6, and
uses the DOS4GW 32-bit DOS extender. The
graphics are VGA, Mode 13, 320x200 pixels with
256 colors. All of the code was custom built, using
no libraries or other commercial code.

2.3 Target Audience and Game Play
Subhunt targets the easiest audience in the game
industry: teenage males. This audience is attracted to
fast-paced real-time action games. The aim of
Subhunt is to sink enemy vessels without incurring
too much damage to your submarine, while
simultaneously managing the resources of air, battery

3 The total amount of cash expended, exclusive of
faculty salaries, was less than $7000.

charge, fuel, and torpedoes. The reward for sinking
ships includes:
• The immediate feedback of seeing and hearing

them explode and sink.
• The accumulation of powerups from the

wreckage. These objects recharge the player’s
resources, enabling longer game play.
(Powerups are described more fully in Section
7.7.)

• The reduction of future damage to the player’s
submarine, also enabling longer game play.

• The awarding of medals and progress to the next
level (with new challenges) when all enemies
have been sunk.

2.4 Marketing Strategy
The distribution rights to Subhunt were released
under contract to Spectrum Pacific Publishing, a
shareware publishing company. A fully functional
public-domain version of the game can be
downloaded from one of several sites on the World-
Wide Web (see Section 8). This shareware version
of the game consists of one mission set containing 3
missions. This allows several hours of game play,
during which the player will (it is hoped) become
immersed in the game. To receive the full game,
which has three additional mission sets with a total of
12 missions, the player must order the commercial
version on CD-ROM from the shareware publisher.

2.5 Student Participation
A total of 18 students participated in the creation of
Subhunt on a voluntary basis. Students wrote 4000
of the 30000 lines of code, composed the 15 pieces of
music, and drew the more than 1000 files of artwork
in the game.

3 Multimedia
Subhunt is a multimedia game, meaning that
graphics, sound effects, and music contribute to
player’s willing suspension of disbelief. This section
describes the multimedia elements of Subhunt.
Section 3.1 gives details of sound card support.
Section 3.2 describes the sampled sound effects.
Section 3.3 describes the MIDI music. Finally,
Section 3.4 discusses the artwork.

3.1 Sound Card Support
Subhunt supports the Soundblaster 16 (FM synthesis)
and Waveblaster (MIDI wave table) sound cards
from Creative Laboratories, which are among the
most popular sound cards for PC gamers. The player
selects the sound card driver to be used in Subhunt by
first running a custom sound setup program called

 2

sndsetup.exe. This program presents the user
with a menu from which the sound card type is
selected. It then plays sound and music while
allowing the user to set initial values for the (software
controlled) master volume, sound effects volume, and
music volume.

Since some players will not necessarily have an
appropriate sound card, audio feedback is
supplemented with a text analog in the form of a
heads-up display (or HUD) that overlays the
periscope window. Text scrolls through this window
in real time as the game progresses. For example,
when the submarine is hit by a shell the player sees a
large explosion in the periscope window, hears an
explosion (if a sound card is present), and sees the
text “Shell hit” scroll by on the HUD.

3.2 Sound Effects
The sound driver was written by Steve Wilson, a
senior undergraduate student in the Computer
Science program. Sounds are preloaded into memory
from a packed VOC format file. During game play,
individual sounds are played asynchronously using
DMA. Up to four sounds can be mixed and played
together dynamically. There are 60 sound effects
sampled at 12 KHz in mono, using 1MB of RAM.
Sound effects are a combination of sounds from
royalty-free CD-ROMs, sounds sampled from
everyday life with a microphone, and faked sounds
that have been modified using standard public
domain audio editing software.

3.3 Music
The music for Subhunt, composed by Steve Wilson
and Jeremiah Isaacs, consists of 15 original
compositions4, most of which are 3-5 minutes in
duration. The music sets the mood for the game,
with 3 compositions on a central theme for each of
the registered mission sets. In contrast to the active
music during gameplay, a mellow hornpipe is used
while the menu system is being displayed.

The music is in MIDI type 0 format. MIDI format
was chosen for compactness, because it consists
essentially of a sequence of key-up and key-down
commands. The music driver, which was written by
Steve Wilson, supports both FM synthesis and MIDI
wavetable using the MPU 401 chipset.

4 One for each of the 12 missions, one for the menu
system, one for use in sndsetup.exe, and a logo
chord.

3.4 Artwork
The art for Subhunt was primarily created by students
enrolled in “Art and Design of the Computer Game”
taught by the second author during Spring semester
1997 (see Section 9 for a full list of names). This is a
new course offering in the School of Visual Arts
taught in conjunction with “Game Design and
Programming” in the Department of Computer
Sciences. All artwork was designed following
Design Process, allowing the student artists to
understand the complete process of preparing art for
the computer game. The students conceptualized the
artwork by interviewing the producer of the game
and developing initial artwork for presentation.
Following approval of these sketches by the producer
finished drawings were produced on paper prior to
final creation on the computer.

To create the final artwork off-the-shelf art tools
were used, primarily Kinetix 3DStudio Max for 3D
modeling and rendering. Additional modeling was
completed in Caligairi TrueSpace. Adobe Illustrator
and Photoshop were used extensively for design and
for image processing prior to final integration into the
code.

Each ship and active playing asset was created using
a texture mapped polygon mesh model, which was
then lighted and rotated through 360 degrees. All of
the models were rendered at 10-degree increments,
and these images were used as ship sprites (for
example, Figure 1 shows 8 of the 36 images of the
patrol boat). The camera was placed at the water
level in order to simulate the perspective of the
periscope, ensuring that the bottoms of the ships are
flat.

Figure 1 Some of the patrol boat artwork.

Following rendering each image was processed
individually in a procedure developed by second
author and the students to create nonanti-aliased
edges and indexed into the 256-color game palette.
Since Photoshop version 3.01 did not have batch
processing, each image was processed using a
sequence of function key commands set up in the

 3

program. This procedure allowed the students to
automate the process to some degree. The finished
images were transferred to the programmers from the
School of Visual Art’s file server.

4 Code Design
This section describes some of the major design
decisions that were made during the creation of the
code for Subhunt. Section 4.1 introduces the main
frame loop, consisting of frame composition and
frame blitting, which are discussed in Sections 4.2
and 4.3, respectively. Section 4.4 discusses the use
of timers, and Section 4.5 discusses the 2D versus 3D
parts of the game. Code and data organization are
outlined in Sections 4.6 and 4.7, respectively.
Section 4.8 sketches some security issues with
respect to piracy, and finally, Section 4.9 discusses
designing with foreign language translation in mind.

4.1 The Main Frame Loop
The main loop for Subhunt consists of two tasks.
Firstly, compose a frame of graphics in an array in
memory called the offscreen buffer. Secondly, blit
(block load) the offscreen buffer quickly to video
memory.

The offscreen buffer resides in general-purpose
memory for following reason. The sprite engine uses
the so-called painter’s algorithm; first draw the
background, then draw the objects on top of it, from
furthest to nearest. Overwriting pixels in this manner
is cheaper than computing which objects occult
others in the view screen. Thus, each pixel may be
overwritten several times, which is faster in general-
purpose memory than video memory5.

The most important facts to remember about the main
frame loop are:
• The frame rate will vary from one computer to

another depending on processor speed and
graphics capability.

• The frame rate will vary within a game
depending on the amount of action.

It is imperative that the graphics and game action
remain smooth despite these challenges. The frame
rate should:
• Average at least 24 fps (frames per second).
• Be at least 12 fps in the worst case.

5 Video memory hardware is often intrinsically faster
than general-purpose memory, but most of the access
cycles are allotted to the video serializer (the piece of
hardware that draws from the video memory to the
screen), rather than to the CPU.

4.2 Frame Composition
The steps in composing a frame of Subhunt are as
follows:
• Process the player input from the device drivers.
• Update the objects (includes physical motion and

state change).
• Draw the background, a texture-mapped sea and

sky (see Section 6.1).
• Draw the foam (see Section 6.3).
• Sort the visible objects (including ships, static

objects, and land sprites) on distance from the
sub using Quicksort (see Hoare [3]).

• Draw sprites (see Section 6.2) in decreasing
order of distance.

4.3 Blitters
To speed up the frame loop, different areas of the
screen are treated in different ways according to the
level of activity that they experience:
1. Active areas of the screen that usually change in

every frame are blitted to the video memory at
the end of each iteration of the frame loop.

2. Areas of video memory that do not change (such
as the background of the instrument panel) are
loaded once to the video memory and left there.

3. Areas of video memory that change slowly (such
as flashing lights) are written directly to video
memory when the need arises.

We arranged for the artist to deliver the viewport
artwork with active areas painted in a reserved palette
position (specifically, palette position 0) as in Figure
2. (Compare this with the screenshot in Figure 5 in
Appendix A). Note that some of the active areas are
irregularly shaped.

Figure 2 The control panel artwork. The four active

areas to be blitted are depicted in black.

Since Subhunt has three main viewports (see
Appendix A), the coding of fast blitters is a tedious,
time-consuming, and error-prone task that cries out to

 4

be automated. We constructed a tool called Qblit (for
Quick blitter) that inputs a pcx file f and outputs a
piece of assembly code that loads from the offscreen
buffer to video memory (in the fastest manner
possible) those pixels drawn in palette position 0 in f.
Qblit was then run on the three viewports to create
custom assembly code blitters that were then
compiled into the project (see Section 4.6).

4.4 Timer Based Code
In order to ensure that the game runs at the same
speed on a variety of processors (which at the time of
shipping ranged from a 66MHz 80486 to a 233MHz
80586), the code is heavily timer-based. A fast
millisecond game timer replaced the default clock
interrupt service routine. All actions in the game
depend upon that timer. For example:
• Ships moves a distance that depends on the

ship’s speed and time since last move.
• Each ship has a vector and a desired vector, the

latter being set periodically by the AI (see
Section 5). If the desired vector is different from
the current vector, then the former is changed by
an amount dependent on the turn distance and
time since last turn.

4.5 2D Versus 3D
Subhunt is technically what is known in the computer
game industry as a 2.5D game. While the player has
what is apparently a 3D viewpoint, the action actually
takes place on what is essentially a 2D board that is
“popped up” into the third dimension using sprites,
which are the computer graphic equivalent of
cardboard cutouts.

Figure 3 A long range scan map.

Subhunt is heavily based on a 2D map that is input as
a pcx file (for example, see Figure 3), each pixel of
which represents a rectangular tile of sea or land.
The palette position of each pixel determines what is

located in the corresponding tile. The map has many
purposes:
• User display: The map is displayed on the sub

control panel (if the sub is at periscope depth) as
a long range scan map, with ship and sub
positions overlayed6.

• Depth calculation: The pixel value for each tile
indicates the depth of water.

• Land detection: The ships and sub project a line
forward from their current position on the map to
detect imminent land collision.

• Collision detection: Collision detection is
optimized by only having objects compute
relative distances when they occupy the same tile
(see Section 7.5).

• Coastline skeletonization: The coastline is
reduced to a line, which is displayed in the active
sonar (see Section 6.4) and is used to display the
coastline in the periscope window as a series of
sprites, one per pixel.

• Static objects: The location of immobile objects
(see Section 7.7) is encoded as colored pixels.

• Motion planning: The map also contains the
locations of vertices in the motion planning
graph (see Section 5.3).

4.6 Code Organization
The code for Subhunt is divided into 56 header files,
47 C++ files, and 8 assembly code files. The
assembly code files are as follows:
1. DMA_CODE.ASM: code for DMA
2. MBLIT.ASM: blitter for camera view
3. PKEYS.ASM: keyboard driver
4. SBFMASM.ASM: music driver
5. SB_DSP.ASM: sound driver
6. SCREEN.ASM: video driver
7. VBLIT.ASM: blitter for periscope view
8. ZBLIT.ASM: blitter for control panel

The C++ code files are as follows:
1. ASMSOUND.CPP: sound driver
2. BOARD.CPP: long range scan map
3. BRESLINE.CPP: Bresenham’s algorithm
4. BUTTONS.CPP: pushbutton animation
5. COMPASS.CPP: compass
6. CRSHRS.CPP: compiled sprite for crosshairs
7. DAMAGE.CPP: damage control
8. DEMO.CPP: demo mode
9. FOAM.CPP: foam animation manager

6 However, to enhance gameplay, some enemy
vessels do not appear on the long range scan, and
false land information may be included in certain
missions.

 5

10. GEOMETRY.CPP: geometry
11. GODMODE.CPP: God mode manager
12. GRAPH.CPP: motion planning
13. HEADSUP.CPP: heads-up text manager
14. HELP.CPP: help manager
15. HUNT.CPP: main()
16. INDEX.CPP: file manager
17. INPUT.CPP: input manager
18. JOY.CPP: joystick driver
19. KBD.CPP: keyboard settings manager
20. LEVELS.CPP: level description manager
21. LOADBAR.CPP: load bar animation
22. MEDALS.CPP: medal manager
23. MENU.CPP: menu manager
24. MIDIMOD.CPP: music driver
25. MOUSE.CPP: mouse driver
26. OXYGEN.CPP: control panel dial manager
27. PALFX.CPP: palette effects
28. PCX.CPP: pcx file input
29. PCXSNAP.CPP: screen snapshot saver
30. PREDICT.CPP: sub prediction manager
31. RANDOM.CPP: pseudorandom number

generator
32. SBFM.CPP: music (FM synthesis)
33. SBFM_ISR.CPP: music (FM synthesis)
34. SBSPRTS.CPP: general sprite manager
35. SCNRIO.CPP: scenario manager
36. SETTINGS.CPP: custom game settings manager
37. SHIPS.CPP: ships and fleet control
38. SAVER.CPP: save game manager
39. SONAR.CPP: sonar
40. SOUND.CPP: sound settings manager
41. SSMGR.CPP: ship sprite manager
42. SPRITE.CPP: sprites
43. STRTABLE.CPP: string table manager
44. SVGA.CPP: SVGA for intro screen
45. TORPS.CPP: torpedo manager
46. TEXT.CPP: text manager
47. TYPEWRTR.CPP: typewriter text animation

4.7 Data Organization
Subhunt uses the following files. Note that packed
files have been used for the sounds, music, art, and
text. Index information is included in separate index
files for security reasons (see Section 4.8).
• DEFAULT.REG: sound register data
• DEMO.DAT: demo keystroke file
• DOS4GW.EXE: 32-bit DOS extender
• IMAGES.PPX: packed art file
• KBDMAP.DAT: player keyboard map
• LVLINDX.DAT: text index information
• MIDI.IBK: MIDI instrument bank file
• PMDINDX.DAT: music index information
• PPXINDX.DAT: image index information
• SETTINGS.DAT: player preferred settings

• SNDSETUP.EXE: sound setup executable
• SUBHUNT.EXE: Subhunt executable
• SUBHUNT.PFL: packed text file
• SUBHUNT.PMD: packed music
• SUBSOUND.VPF: packed sound effects
• *.SVG: saved games

4.8 Security Issues
The threat of piracy is an important issue that affects
code design from the earliest stages. While it is true
that everything a game designer can do a pirate can
undo, the role of security code is to prevent casual
hacking and to make the pirate’s job as painful as
possible. Security assumptions must include:
• Pirates will use state-of-the art symbolic

disassemblers and debuggers to examine the
code structure and data files.

• Pirates will view cracking a game as a challenge,
and hence will devote large amounts of time to
the task without necessarily having any regard
for potential profit.

• The game will eventually be cracked.

Some of the security measures undertaken in Subhunt
include7:
• Input Files: The music file, the art file, and the

text data file are all encrypted. Some files use a
slightly different encryption method. The
method chosen makes some data appear only
marginally distinguishable from random strings.
Index files may be encrypted using a different
password from the corresponding packed data
file.

• Saved Game: The saved game files are also
encrypted, and contain information that prevents
the player from receiving medals by saving a
game that is close to completion, then replaying
the saved game repeatedly or sharing it with a
friend.

• Medal Files: The medal files are encrypted and
use multiple orthogonal encrypted checksums to
prevent alteration by players.

• God Mode: The game supports God mode, in
which players are invulnerable and use no
resources. God mode is a favorite target of
hackers and pirates. There are two God mode
passwords. The first, which will be made public,
does not allow the player to win medals. The
second, which will not be released, allows the
player to win medals. To get into God mode, the
player hits the F12 key, then types in a password.
What happens next is unorthodox. The player is

7 For obvious reasons, not all of the security measures
will be described.

 6

momentarily put into God mode no matter what
password is entered. A number of asynchronous
password verification agents scattered
throughout the executable code become active at
various randomly chosen intervals ranging from
several milliseconds to several seconds after the
password is entered. Each has the responsibility
of checking a single byte of the password, and
will cancel God mode if an error is detected.
The lack of proximity of these agents to the
password acquisition code in the executable file
and in time is intended to make the task of
locating and disabling them tedious.

4.9 Foreign Language Translation
Subhunt may be played in English or German, the
selection being made when sndsetup.exe is run.
The task of incorporating foreign language
translations is made easier if it is incorporated into
the design process at an early stage. For example:
• Avoid using text in the artwork. Use icons

instead wherever possible.
• Load all of your text from external text files.
• Do not use quoted text in your code. Instead,

load all strings from a text file into a string table.
• Include accents in your custom fonts.

5 Artificial Intelligence
It is easy to make AI that is unbeatable, since the AI
has access to complete information about the player’s
sub. The AI can be in the right place at the right
time, and every missile, shell, and depth charge can
be a hit. The problem is to devise imperfect AI that
is somewhat unpredictable, believable, challenging,
and yet defeatable. The ship AI has three
components:
1. A rule based system (Section 5.1)
2. Agents (Section 5.2)
3. Motion planning (Section 5.3).

5.1 State and Rules
The actions taken by the ships are governed by rules
that are dependent on:
• Sub visibility
• Distance from sub
• Mood
• State
• Armament

The moods are: scared, concerned, balanced, feisty,
and aggressive. The current mood depends on the
amount of damage taken.

The ship states are:

• Wandering (heading in a random direction with
long period)

• Avoiding (heading away from sub’s last known
position)

• Attacking (attacking the sub)
• Exploding (stopped, with animated explosion)
• Sinking (stopped, disappearing under water)
• Dead (nonexistent, used for garbage collection)
• Waiting (stopped for a specific period)
• Touring (under control of motion planning)
• Aground (too close to land, shortly to begin

sinking)
• Panicking (unpredictable behavior)
• Patrolling (moving back and forth between two

points using motion planning)
• Dithering (heading in a random direction with

very short period)
• Rotating (turning in place)
• Harassing (actively seeking sub)
• Parked (stopped in place)
• Circling (travelling in a circle)
• Ramming (heading for sub if visible).

The attacking state has four phases when the sub is at
periscope depth:
• Charge (head directly for sub, firing torpedoes

and forward deck guns if available)
• Broadside (circle sub, firing all deck guns if

available)
• Retreat (run away from the sub, firing rear deck

guns and laying mines if available)
• Stand down (go back to default state, which is

usually either Touring or Patrolling).
The ship changes attack phase dependent on mood,
distance from sub, and a random factor.

5.2 Agents
Each ship AI has three competing and cooperating
agents (after Minsky [4]), which are implemented as
follows. The default agent does nothing. The other
agents spend some of the time asleep, awakening
after a specific time period to sample the current
conditions and take action based on that sample.

The land avoidance agent is in charge of making sure
that the ships do not run into the land. It is a high
priority agent that is frequently active. The action
taken is dependent on the current ship state and a
random factor. Possible land avoidance actions
include breaking to the right, breaking to the left, and
reversing course. Nonetheless, it is quite feasible to
drive a ship onto land, as we will see in the next
paragraph.

 7

The sub detection agent is responsible for detecting
the player’s submarine and taking appropriate action.
The action taken depends on the current ship state
and a random factor. It becomes active every 2-4
seconds depending on the ship’s mood. Its decisions
will override those of the land avoidance agent, and
hence may accidentally lead to the ship being driven
aground. The sleep time means that ships will only
take action 2-4 seconds after the sub becomes visible,
and that information about the sub’s location will be
imperfect. Sub visibility is dependent on the
following factors:
• Distance to ship
• Type of engine in use (diesel or electric)
• Intervening land, if any
• Current speed
• Time since a torpedo was last fired
• Depth
• Whether active sonar is in use
• A random factor

5.3 Motion Planning
The maps in Subhunt can contain more land than is
often seen in submarine games (see, for example,
Figure 3). The problem with having too much land is
that it constrains motion. As described in the
previous section, the AI takes care of land avoidance,
but simple avoidance of land is not sufficient for
realistic game play since it typically results in ships
acting like rubber balls that ricochet from landfall to
landfall. Instead, ships should appear to implement
sensible plans for reaching destinations.

Up to 64 tiles in each map are labeled as special
locations called vertices. Each vertex represents a
valid destination for ships in the Touring state. When
a ship enters the Touring state, it chooses a random
vertex v as destination and travels a shortest path
from its current location through intermediate
vertices to v. It then waits for a random amount of
time in the Waiting state before picking a new
random destination. A ship that is in the Harassing
state will head for the vertex that is nearest the sub.
On arrival, if the sub is visible from that vertex, the
ship will go into the Attack state. Otherwise (the sub
has moved on while the ship was en route), the ship
heads for a random vertex, and from there resumes
the chase. Ships in the Patrolling state will use
motion planning to move back and forth between two
fixed vertices.

The shortest path between vertices is computed using
Floyd’s algorithm (see Floyd [2], or for more
contemporary coverage, see any standard algorithms
text such as Cormen, Leiserson, and Rivest [1]).

Floyd’s algorithm uses a precomputed table that
allows the shortest path between any pair of vertices
to be computed quickly. The table is constructed
from the vertex information in the map in less than a
second on entry to each level. The initial graph for
Floyd’s algorithm consists of the vertices indicated in
the map, joined by edges between those pairs of
vertices for which a line can be drawn from one to
the other without hitting land. The amount of storage
required for the table is two 64 by 64 arrays of 8-byte
integers, for a total of 64K bytes.

An interesting and desirable effect of this approach is
that ships tend to move in reasonably wide sea-lanes,
as does shipping in everyday life.

6 Graphics
Subhunt’s graphics provide the majority of the
feedback to the player. We will discuss briefly four
of the techniques used. Section 6.1 describes the
quick-and-dirty texture mapping algorithm used for
the sea and sky. Section 6.2 discusses some of
aspects of sprite animation. Section 6.3 discusses the
animation of sea foam. Section 6.4 describes the
animation technique used for the sonar screen.

6.1 Texture Mapping
Some elementary texture mapping techniques are
used to draw the sea and the sky to the periscope
window. The horizon is kept horizontal to simplify
matters. Rather than perform an accurate texture map
to the tiles of the sea and sky, we use a sloppy
algorithm that is fast, yet provides enough visual cues
to the player.

Figure 4 The ocean texture.

Consider the example of texture-mapping the ocean
(the sky is similar). The process starts with a toroidal

 8

ocean tile, that is, an ocean texture drawn from above
that wraps from top to bottom and left to right (see
Figure 4). The texture mapping algorithm maintains
the x and y coordinates of a source point p within this
tile. A rectangle is drawn from the tile using p as the
top left corner (wrapping around at the right and/or
bottom as necessary) to the offscreen buffer in a
position that covers the periscope window in the
current view (control panel, fullscreen periscope, or
missile camera). The drawing is done in a manner
that allows for motion and perspective correction, as
follows.

Suppose the sub is moving forwards (the other case is
left as an exercise for the reader). Viewpoint motion
is handled by having the source point p move with
the sub. More importantly, the direction in which p
moves depends on which direction the periscope is
facing. For example, if the periscope is facing
forwards, then p moves up. If the periscope is facing
to the left, then p moves to the right. In general, if
the periscope is at angle ϑ from straight ahead, then p
moves at angle of -ϑ from up in the tile.

Perspective correction is faked by dividing the
periscope window into horizontal bands of equal
height, and copying every second row of the ocean
texture into the lowest band, every third row into the
next band, every fourth row into the next band, and
so on. Since there is no horizontal perspective
correction, each band can be drawn very quickly
using block moves. No attempt is made to correct the
fact that a different set of alternating rows is used as p
moves vertically in the tile, resulting in a shimmering
effect that is suggestive of ocean waves.

6.2 Sprite Animation
A sprite is game industry terminology for a small
graphic image to be loaded to video memory in dirty
rectangle animation. There are two basic kinds of
sprites: computed sprites and compiled sprites.
Computed sprites are loaded from art files, and
include transparent pixels indicated using a reserved
palette position (we used palette position 0). They
are drawn by a single general-purpose piece of code
that successively examines each pixel in the image,
drawing only the nontransparent ones.

Almost all of the sprites in Subhunt are computer
sprites. For example (as mentioned in Section 3.4),
each ship sprite is stored at a fixed size, viewed from
one of 36 different angles. The correct angle is
selected at runtime, and the appropriate sprite image
is drawn to the offscreen buffer, performing clipping
and scaling on-the-fly.

Sprite scaling is an interesting task that can
unintentionally be made harder than necessary. In
Subhunt, sprites can be drawn larger or smaller than
actual size. For higher image quality, ship sprites are
200-300 pixels wide, and are therefore scaled down
more often than up. Downscaling can be achieved by
skipping certain rows and columns of pixels, for
example, half size can be achieved by drawing every
second row and column. Suppose we call this a skip
distance of 2. Drawing at 2/3 scale requires
alternating skip distances of 1,2,1,2,1,2,… etc. Other
scaling factors may require increasingly complex
skip distances, for example, 3/11 scale requires skip
distances of 3,4,4,3,4,4,… etc.

Some game programming texts recommend that a
table of skip distances be maintained for a range of
useful scale factors. A better approach is to use a
floating point skip distance of 1/s when the scale
factor is s. The current position within the sprite
image is kept as a floating point value and type-cast
to an integer before retrieving the pixel. This
approach can be further accelerated by using fixed
point values with a 16-bit integer part and a 16-bit
fractional part instead of floating point numbers.

The ability to scale sprites to an arbitrary fraction can
be a two-edged sword. Changing the scale factor
slightly may change the skip distance but not the
scaled sprite’s width or height, causing the pixels of
the scaled image to shift slightly in a disturbing
roiling fashion known as sprite creep. This effect
can be avoided by recording for each sprite the last
used scale factor. If the new scale factor does not
change the sprite’s height or width, then the old scale
factor is used instead.

In contrast, a compiled sprite is drawn with a custom
piece of code that draws only the nontransparent
pixels without even examining the others. Compiled
sprites should be used when:
• The sprite has lots of transparent pixels.
• Speed is an issue (for example, when the sprite is

very large).
• The sprite will not be clipped, scaled, rotated, or

otherwise processed in any way.

This was the case for the crosshairs in the fullscreen
periscope view (see Figure 6 in Appendix A). A new
tool similar in nature to Qblit (see Section 4.3) was
constructed. This program inputs a sprite image and
outputs a C++ function that draws the image directly
to the offscreen buffer. This tool was used to create a
compiled sprite for the crosshairs, which was then
compiled into the project (see Section 4.6).

 9

6.3 Sea Foam
The objects in a computer game should not only
move through the landscape, they should also act on
the landscape. In Subhunt, moving objects leave a
foam trail in the water. Foam trails appear:
• In a line behind torpedoes (which are otherwise

invisible).
• In a swath behind ships and the player’s sub. In

the former case the foam trail provides valuable
visual feedback about the direction in which the
ship is moving. In the latter case, it provides
extra visual feedback that the periscope is
pointing backwards.

• In a large expanding ring for the wavefront of an
EMF burst (see Section 7.6).

• In a small expanding ring around splashes, and
as the final part of the animation of a sinking
ship.

Foam animation is achieved using white pixels to
represent foam flecks. A list of flecks is maintained,
each with an expiration time. Foam trails are created
by having flecks created near the ship’s center, each
with a slight random variation in its expiration time
in order to make the end of the trail appear ragged. A
foam ring with center c and diameter d is created by
placing a number of flecks at distance d from c in
random directions. The value of d is started at zero
and increased slowly over the lifetime of the ring. A
slight variation in fleck expiration time completes the
effect of an expanding ring of foam.

6.4 Sonar
There are two kinds of sonar in Subhunt. Firstly,
there is passive sonar, which merely listens, and
shows only ships. Secondly there is active sonar,
which sends out pings and listens to the return
echoes, showing ships, objects, and the shoreline.
Since real sonar screens require substantial training to
interpret, Subhunt’s sonar display actually looks like
a radar display with a sweep arm and simulated
plasma screen style fade-out.

The sonar animation uses 16 reserved palette
positions containing various shades of yellow-green.
Blips are initially drawn in a bright yellow. After a
small fixed time interval, the palette position of each
blip is darkened by one shade until it matches the
dark green of the background. The sweep arm is
initially drawn in an intermediate yellow, and is
faded out along with the blips to leave a long sweep
trail. It is drawn as a one-pixel wide Bresenham line
from the center of the sonar screen to a point near the
outside. We were initially faced with the problem
that an arbitrary Bresenham line will not necessarily

cover all pixels when swept in a circle, leaving
embarrassing gaps in the plasma screen. This
problem was easily rectified by choosing the radius
of the sweep arm to be a few pixels greater than the
width of the sonar window (which is clipped by the
blitter).

7 The Virtual World
This section will describe briefly the virtual world
that Subhunt provides the player. Section 7.1
describes the level design process, which delivers
world data to the program. Section 7.2 describes the
scenarios for the four mission sets. Section 7.3
describes the ships that are encountered. Section 7.4
describes the deck guns and the method of simulating
shells. Section 7.5 describes the handling of
torpedoes and missiles. Section 7.6 briefly describes
other weapons, including depth charges and EMF
bursts. Section 7.7 describes the static objects
encountered in the game. Section 7.8 describes the
possible outcomes of playing Subhunt: winning or
losing.

7.1 Level Design

map="map0.pcx";

submarine{
 location=(10,5);
 vector=southeast;
 fuel=50;
 battery=50;
 air=50;
}

powerup{
 class=mystery;
 location=(240,113);
 vector=0;
}

ship{
 class=speedboat;
 name="scuzzbucket";
 location=(297,113);
 vector=north;
 maxspeed=3;
 state=touring;
}

minestring{
 location=(280,90) to (310,90);
}

Table 1 Sample declarative code for level design.

 10

Level design is the task of designing the worlds to be
encountered in the various levels of the game. Game
companies will typically invest a person-year or more
of effort in creating a level design editor, which is
used for a period of a few months by specialized
level designers and then discarded8. Instead,
Subhunt inputs a pcx map containing information
about static objects (see Section 4.5), and inputs
information about mobile objects from a text file
using a custom declarative language with a C-like
syntax (for example, see Table 1).

7.2 Mission Scenarios
Subhunt has four mission sets, each consisting of
three missions with a common scenario.
• Covert Operation: A war scenario in which the

player is to destroy all shipping.
• Nemesis: A terrorist scenario in which the player

is to destroy terrorist craft that are harassing
tourist cruise liners.

• Eco Offense: An eco-friendly scenario in which
the player is to sink longline trawlers and
whalers.

• Leviathan: A mystery scenario in which the
player finds him or herself facing various sea
monsters.

Covert operation is shipped with the shareware
version of Subhunt. The remaining mission sets are
shipped only with the registered version.

7.3 Ships
Subhunt has a total of eighteen different vessels.
• The speedboat, patrol boat, destroyer, and

battleship appear in Covert Operation.
• The jetski, cruise liner, airplane, and oil derrick

appear in Nemesis.
• The Trawler, whaler, dolphin, and whale appear

in Eco Offense.
• The barge, oil tanker, crab, moray, octopus, and

waste dump appear in Leviathan.
Each of the ships differ in various properties, some of
which are shown in Table 2. Armor comes in various
strengths which determine how many torpedo hits are
necessary to sink the ship. Armament includes deck
guns, torpedos, depth charges, EMF burst, and other
projectile weapons.

Not all ships will appear on the long range scan. Of
those that do not, some are static and some are
mobile. Those that are static must be discovered by
exploration. Those that are mobile can be tracked by

8 Some companies will ship a level editor with their
game, but not necessarily the one they used to create
the game!

noticing their tendency to harass civilian vessels
(which fortunately do appear on the long range scan).

The initial position of enemy ships is part of the level
design, however, in some missions at some difficulty
levels enemy vessels may created dynamically.
Learning how to circumvent this is part of the
challenge facing the player.

Vessel

G
un

s

To
rp

s

 D
pt

h
C

hr
g

EM
F

B
ur

st

O
th

er

En
em

y

V
is

ib
le

A
rm

or

Speedboat • •
Patrol boat • • • • L
Destroyer • • • • • H
Battleship • • • VH
Jetski • •
Cruise liner •
Airplane • • • •
Oil Derrick • • • VH
Trawler • • •
Whaler • • •
Dolphin
Whale
Barge •
Oil tanker •
Crab • • • H
Moray • •
Octopus • • L
Waste dump • • M

Table 2 Ship types in Subhunt. The dots in columns
2-6 indicate that the vessel has, respectively, guns,
torpedoes, depth charges, EMF burst, and other
weapons. A circle in column 7 indicates that the
vessel is an enemy ship that must be sunk. A circle in
column 8 indicates that the vessel is visible on the
long range scan map. The last column indicates
armor: blank=none, L=light, M=medium, H=heavy,
VH=very heavy.

7.4 Deck Guns and Shells
The deck guns may be front, rear, or center mounted.
The caliber of shell and number of shells fired per
round differ from gun to gun. Each gun takes a
certain amount of time to reload, which varies by a
small random amount each time. Shell launch is
animated as a puff of gray smoke.

The obvious way of implementing shells is to use
complicated AI to predict the target coordinates at

 11

launch time, and then compute (and perhaps even
animate) the parabolic path of each shell. However,
in real life moving shells are almost impossible to
see. We instead modeled each shell as an abstract
Markov process:
• Each shell is inserted into a queue on launch,

tagged with the time of impact, which is a
function of the distance to the sub at time of
launch.

• At each frame, those shells whose time of impact
has arrived are removed from the queue, and
their impact is animated.

• For each shell impact, the probability p of hitting
the sub is computed. This is a function of the
distance that the shell has traveled, the number of
course and speed changes that the sub has made
recently, and a random term. A biased coin with
probability p of success is flipped. If the coin
flip is successful, a shell hit on the sub is
animated. Otherwise, a shell miss (a splash in
the water) is animated, the location of which is a
random function that depends upon the sub’s
current location and most recent change in speed
and direction.

The end result is that the player sees a shell launch,
waits an amount of time that appears proportional to
distance, and then sees either a shell hit or a shell
miss. Evasive action increases the probability of a
shell miss, but the random factor ensures that it is not
a sure thing.

The guns are programmed to fire at sub-launched
torpedoes and missiles in preference to the sub. A
shell splash that is sufficiently close to a torpedo will
detonate it prematurely. This will curb the hit-rate of
both the player and the enemy vessels.

7.5 Torpedoes and Missiles
The sub has three types of torpedoes and two types of
missiles. These include:
• Dumb torpedo: Travels in a straight line from

launch.
• Homing torpedo: If locked onto a target at

launch (indicated by an icon on the HUD), it
actively seeks its target. Travels in a random
path if launched before target is acquired (which
usually results in a hit on the sub).

• Decoy torpedo: Has no warhead, but if launched
underwater will decoy an enemy vessel that has
depth charges, provided the sub is neither
moving too fast, nor has active sonar engaged.

• Stinger missile: The aerial equivalent of a dumb
torpedo.

• Cruise missile (registered version only): May be
wire-guided from the sub.

The straightforward way to perform collision
detection between objects in the game is by
comparing the location of every object to every other
object in the game, which is an inherently quadratic
algorithm. In practice we optimized the process as
follows.

Firstly, there is no collision detection between ships.
The appearance of collision is minimized (but not
eliminated) by ensuring that motion planning has a
built in sloppiness that prevents sea lanes from
becoming too narrow, and by various AI decision
such as ensuring that no ship is charging towards the
ship while another is broadsiding it (see Section 5).

Secondly, collision detection between torpedoes and
ships is simplified by keeping a count of the number
of ships located in each tile (see Section 4.5). Only
those torpedoes that are in the same tile as a ship
actually go on to compute distances from each ship,
and may thereby actually record a collision. A side-
effect is that ships that are on the edge of a tile are
very hard to hit. Since tile edge information is not
available to the player, some torpedoes that appear to
be hits actually miss the ship, a situation that mimics
real life.

7.6 Other Weapons
There are other ship weapons in addition to shells and
torpedoes. Some ships have depth charges, which are
used when the sub dives below periscope depth. The
ship makes repeated passes over the sub’s last known
position until the sub is either destroyed or becomes
invisible for a sufficiently long period of time. The
ship’s attention may be diverted by decoy torpedoes
(see Section 7.5). The depth charges are the only
things that are actually visible in the periscope
window (aside from a blue glow) when the periscope
is underwater.

The EMF burst is a passive weapon that emits a
wavefront visible to the player as an expanding ring
of foam (see Section 6.3). The wavefront may
detonate torpedoes and missiles, and temporarily
impede the progress of the sub, or even damage it.
Damage may be avoided by outrunning the wavefront
or diving beneath it. Fortunately for the player, there
is a short window of time while it recharges.

Finally, there are other miscellaneous projectile
weapons used in the Leviathan mission set.

 12

7.7 Static Objects
Static objects in Subhunt include:
• The battery powerup, which adds battery charge.
• The fuel powerup, which adds diesel fuel.
• The air powerup, which adds air.
• The repair powerup, which reduces repair time.
• The mine, which damages the sub. Mines may

be individual or laid in strings, and may be
proximity fused or time fused.

• The mystery powerup, which may be any of the
above.

The player can activate the above objects by colliding
with them. In addition, there are two other objects
that the user may encounter:
• The pillbox, which has a substantial gun.
• The lighthouse, which has no function (other

than eye-candy).
These objects may only be destroyed by missiles.

7.8 Winning and Losing
The player must destroy all enemy shipping in order
to win a level and thus get awarded a medal and
permission to proceed to the next level. As an aid,
the number of remaining enemy ships is displayed in
the top left corner of the control panel. Factors that
may prevent the player from winning include:
• Running out of resources
• Taking too much damage
• Failing to hit the enemy.

Subhunt has three levels of difficulty. At the lowest
level of difficulty there is no opposition from the
enemy vessels, which makes game play a matter of
hitting ships and collecting powerups. At the
intermediate level of difficulty there is some
opposition, but not all enemy vessel types may be
represented. At the highest level of difficulty there
are no holds barred.

The sub may take damage in several categories:
• Periscope damage is caused by collision with a

floating object, or excessive hull damage. Mild
damage results in broken glass obscuring the
view, and heavy damage renders the periscope
unusable.

• Propellor damage is caused by diving into the
ocean floor. The effectiveness of the engines is
inversely proportional to propellor damage.

• Torpedo launch system damage is caused by
excessive hull damage. Any damage prevents
the launch of torpedoes and missiles.

• Long range scan damage is caused by collision
with a floating object, or excessive hull damage.
Mild damage results in broken glass obscuring

the view, and heavy damage renders the long
range scan unusable.

• Sonar damage is caused by excessive hull
damage. Any damage prevents the use of the
sonar.

• Diesel engine damage is caused by submerging
while the diesel is running. Any damage
prevents the use of the diesel engine.

• Hull damage is caused by enemy weapon strikes
and collisions with land, ocean bottom, or ships.
Excessive hull damage will cause collateral
damage to other systems, and will eventually
lead to hull rupture and death. The depth at
which hull rupture occurs is inversely
proportional to hull damage.

Damage is recorded as elapsed time to repair. The
player can opt to repair one item at a time. The repair
powerup will reduce the repair time of the currently
selected damage category if nonzero, or the next
nonzero damage category otherwise.

8 Further Information
More information on Subhunt can be obtained from
the Subhunt web page at the University of North
Texas: http://hercule.csci.unt.edu/subhunt. In the
US, it can be downloaded from Webfoot Games at
http://www.webfootgames.com/catalog/subhunt.htm.
More information about the publisher can be found at
http://www.spectrumpacific.com.au.

9 Acknowledgements
Subhunt benefited immensely from the enthusiastic
participation of students in the Department of
Computer Sciences, School of Visual Arts, and
College of Music at the University of North Texas.
We are indebted to Karen Bravo, Keith Burlison,
Feras Fanari, Gary Frye, Hillary Han, Brian Higgins,
John Gotcher, Michael Howell, Michael Lagocki,
Jeremiah Isaacs, Daniel Lara, Andy Lomerson, Mark
Mann, Chris Philpot, Rebecca Rodgers, Marco
Rosales, Evan Trickett, and Steve Wilson.

References

1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest,

Introduction to Algorithms, MIT Press, 1990.
2. R. Floyd, “Algorithm 97: Shortest Path”,

Communications of the ACM, 5(6): 345, 1962.
3. C. A. R. Hoare, “Quicksort”, Computer Journal,

5(1):10-15, 1962.
4. M. Minsky, Society of Mind, Simon and

Schuster, 1985.

 13

http://www.webfootgames.com/catalog/subhunt.htm

Appendix A: Screen Shots

Figure 5 Instrument panel view.

Figure 6 Full-screen periscope view.

Figure 7 Cruise missile camera view.

Appendix B: Controls

Type Command Key
Propulsion Faster Pad +
 Slower Pad -
 Stop Pad *
 Diesel start/stop E
 Supercharger Tab
Attitude Left rudder Left arrow
 Right rudder Rt arrow
 Down ailerons Dn arrow
 Up ailerons Up arrow
Sonar Active A
 Passive D
 Off S
Long range scan Zoom in Z
 Zoom out X
 Left H
 Right L
 Up K
 Down J
 Lock on sub Left shift
Heads-up display On/off T
 Scroll faster Y
 Scroll slower R
 Flush buffer Q
Periscope Rotate left Pad 4
 Rotate right Pad 6
 Stop rotation Pad 5
 Look Enter
 Spin to front Pad 8
 Spin to rear Pad 2
 Crosshairs on/off Pad 0
Damage control Start/stop repair \
 Total -
 Next Backspace
 Previous =
 Next damaged [
 Previous damaged]
Torpedoes Launch Space
 Load Right Alt
 Unload Right Ctrl
 Next Left Alt
 Previous Left Ctrl
 Camera Right shift

Table 3 Initial assignments for customizable
keyboard commands.

 14

Type Command Key
General Exit ESC
 Pause F1
 Custom settings F2
 Help F3
 Redraw screen F4
 Save game F5

Table 4 Fixed keyboard commands.

Figure 8 Control panel: (1) enemy count, (2) fuel,
(3) battery charge, (4) air, (5) launch control, (6)
elapsed time, (7) hull pressure, (8) damage control,
(9) periscope, (10) periscope control, (11) rudder,
(12) speed, (13) ailerons, (14) sonar, (15) depth, (16)
throttle, (17) compass, (18) long range scan.

Figure 9 Detailed view of the periscope, rudder, and
sonar controls: (1) periscope stop button, (2)
periscope left button, (3) periscope angle, (4)
periscope right button, (5) rudder left button, (6)
rudder dial, (7) rudder right button, (8) active sonar
light, (9) sonar switch, (10) passive sonar light, (11)
sonar screen.

Figure 10 Detailed view of damage control: (1)
indicator light, (2) current item, and (3) repair time.

Figure 11 Detailed view of the torpedo launch
controls: (1) current rack, (2) launch button, (3)
loaded torpedo, (4) load button, (5) status light, (6)
unload button, (7) previous rack button, (8) torpedo
count, (9) next rack button.

 15

	1 Introduction
	2 Production
	2.1 Motivation
	2.2 Target Architecture
	2.3 Target Audience and Game Play
	2.4 Marketing Strategy
	2.5 Student Participation

	3 Multimedia
	3.1 Sound Card Support
	3.2 Sound Effects
	3.3 Music
	3.4 Artwork

	4 Code Design
	4.1 The Main Frame Loop
	4.2 Frame Composition
	4.3 Blitters
	4.4 Timer Based Code
	4.5 2D Versus 3D
	4.6 Code Organization
	4.7 Data Organization
	4.8 Security Issues
	4.9 Foreign Language Translation

	5 Artificial Intelligence
	5.1 State and Rules
	5.2 Agents
	5.3 Motion Planning

	6 Graphics
	6.1 Texture Mapping
	6.2 Sprite Animation
	6.3 Sea Foam
	6.4 Sonar

	7 The Virtual World
	7.1 Level Design
	7.2 Mission Scenarios
	7.3 Ships
	7.4 Deck Guns and Shells
	7.5 Torpedoes and Missiles
	7.6 Other Weapons
	7.7 Static Objects
	7.8 Winning and Losing

	8 Further Information
	9 Acknowledgements
	References
	Appendix A: Screen Shots
	Appendix B: Controls

