A Memory-Efficient Method for Fast
Computation of Short 15-Puzzle Solutions

lan Parberry

Technical Report LARC-2014-02

Laboratory for Recreational Computing
Department of Computer Science & Engineering
University of North Texas
Denton, Texas, USA

April 2014

UNIVERSITY OF

NORTH-TEXAS




A Memory-Efficient Method for Fast
Computation of Short 15-Puzzle Solutions

Ian Parberry
Dept. of Computer Science & Engineering
University of North Texas
Denton, TX, 76203-5017
http://larc.unt.edu/ian

Abstract—While the 15-puzzle has a long and interesting
history dating back to the 1870s, it still continues to appear
as apps on mobile devices and as minigames inside larger video
games. We demonstrate a method for solving the 15-puzzle using
only 4.7MB of tables that on a million random instances was
able to find solutions of 65 moves on average and 95 moves in
the worst case in under a tenth of a millisecond per solution on
current desktop computing hardware. These numbers compare
favorably to the worst-case upper bound of 80 moves and to the
greedy algorithm published in 1995, which required 118 moves
on average and 195 moves in the worst case.

Index Terms—15-puzzle, 8-puzzle, breadth-first search, di-
rected graph, divide and conquer, greedy algorithm.

I. INTRODUCTION

The 15-puzzle has fifteen numbered tiles arranged in row-
major order on a 4 x 4 grid leaving a blank space in the last
position (see Fig. 1, left). A single move of the puzzle involves
sliding an adjacent tile horizontally or vertically into the blank
space. The aim is to return a randomized puzzle (for example,
Fig. 1, right) to the initial configuration making the smallest
possible number of moves. The 15-puzzle can obviously be
generalized to the (n? — 1)-puzzle, for all integers n > 2. The
smaller and more manageable 8-puzzle is of particular interest.

The 15-puzzle has a long and interesting history (see, for
example, Hordern [1]) that is said to date back to the 1870s.
More recently, it has appeared in the form of various apps on
mobile devices and as minigames inside larger games. For
example, the 15-puzzle can be found in the original Final
Fantasy (Square Enix, 1987) and The Legend of Zelda: The

Fig. 1: The 15-puzzle in its solved configuration (left) and a
random configuration (right).

Windwaker (Nintendo 2003), and the 8-puzzle can be found
in Machinarium (Amanita Design, 2009).

A table of optimal moves for all 16! 15-puzzle config-
urations would take up 327GB (see Section IV), which is
impractical for consumer use on current technology. We show
how to compute 15-puzzle solutions of worst case length 93
and expected length less than 66 using only 4.7MB of tables,
which is a practical memory requirement even on mobile
platforms. The number of moves compares favorably to the
worst-case upper bound of 80 moves from Briingger et al. [2].

The remainder of this paper is divided into four sections.
Section II sketches some prior work. Section III describes
how to compute optimal solutions to the 8-puzzle. Section IV
shows how to extend these results to the 15-puzzle by taking
the advantage of the observation that most optimal 8-puzzle
solutions appear to proceed in a very structured manner.
Section V summarizes our results and gives open problems.

II. PRIOR WORK

Reinefeld [3] showed that the 8-puzzle can be solved in at
most 31 moves. Briingger et al. [2] showed that the 15-puzzle
can be solved in at most 80 moves. Ratner and Warmuth [4]
have proved that the problem of finding the minimum number
of moves for the (n? — 1)-puzzle is NP-hard, and they
demonstrate that a polynomial time approximation algorithm
exists. Kornhauser, Miller, and Spirakis [5] show an O(n?)
time algorithm for the (n? — 1)-puzzle, which therefore uses
O(n3) moves in the worst case.

Parberry [6] gave worst case upper and lower bounds of 5n®
and n? respectively on the number of moves required to solve
the (n? — 1)-puzzle, and lower bounds of at least 2n3/3 and
0.264n3 respectively for the expected number of moves and
the number of moves required for a random configuration with
probability one. The upper bound of 5n% moves was derived
by using divide-and-conquer, first using a greedy algorithm to
place the first row and column and then recursing on the rest
of the puzzle down to the 3-puzzle, which is trivial to solve.
We will refer to this the greedy algorithm for the rest of this
paper. More recently, Parberry [7] showed both theoretically
and experimentally that the greedy algorithm solves the (n? —
1)-puzzle in expected number of moves §n* + O(n?).



25

15

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 2: The distribution of shortest solution lengths for the
8-puzzle. The horizontal axis shows the possible lengths of
shortest paths, and the vertical axis shows the number of
puzzle configurations that have a shortest path of that length,
measured in thousands.

22.15|21.90|22.12 30 29 | 30
21.90/21.65|21.89 29 30 | 31
22.12/21.89|22.14 30 | 31 30

Fig. 3: The expected (left) and worst-case (right) solution
lengths for the 8-puzzle when the blank is in each of the 9
possible initial positions.

III. THE 8-PUzZLE

In 1993 Reinefeld [3] showed that the 8-puzzle can be
solved in no more than 31 moves. It is interesting to ask how
much CPU time it would take to duplicate this result using
current technology.

Define the solution graph of the 8-puzzle to be a directed
graph with a vertex vy for each configuration s, and an edge
from vertex vs to vertex v, if there is a legal move from
configuration s to configuration ¢. For example, consider the
three configurations in Fig. 4. The configuration at left is
the initial configuration. The center configuration is reachable
from the initial configuration by sliding tile 6 down into
the blank space (which can also be viewed as sliding the
blank up). The right configuration is reachable from the initial
configuration by sliding tile 8 to the right into the blank space
(which can also be viewed as sliding the blank left).

Each of these configurations can be stored in row-major
order in a 64-bit integer using eight hexadecimal digits, with
tile ¢ represented by digit +—1 and the blank represented by the
digit 8, as shown below each of the configurations in Fig. 4.
Fig. 5 shows part of the solution graph with nodes representing
these three configurations, and edges labelled with “L”, “R”,
“U”, and “D” when the edge represents a move of the blank
one place left, right, up, and down, respectively.

A solution for all configurations of the 8-puzzle can
be found by performing a breadth-first search (Moore [8],
Lee [9]) on the solution graph starting at vertex

0x012345678.

0x012345687

Fig. 4: Three configurations of the 8-puzzle with their repre-
sentations as hexadecimal numbers.

R
u
12345678 12348675] [12345687]
° !
L

Fig. 5: Part of the solution graph with vertices representing the
configurations in Fig. 4 and edges representing moves between
them.

We can then recover, for each configuration, the next move on
the shortest path to the solution. These can be stored in a data
file containing optimal next move for each of the 9! = 362, 880
configurations (including, for convenience sake, the unsolvable
ones). Each entry takes up 2 bits, giving a total of less than
90KB of memory.

A straightforward implementation in C++ took 250ms of
CPU time to run using a single core of an Intel® Core™
i7-3930K CPU @ 3.2GHz to determine the shortest solutions
for all 181,440 solvable configurations of the 8-puzzle (the
even permutations of the tiles). Fig. 2 shows the distribution
of shortest solution lengths, and Fig. 3 shows the expected
(left) and worst-case (right) solution lengths when the blank
is in each of the 9 possible initial positions. We were able
to verify that 31 moves are required in the worst case, and
determined that the expected number of moves is slightly less
than 22.

By comparison, in 10° random trials the greedy algorithm
solved the 8-puzzle in used expected number of moves 44.76
(just over double the optimum) and a maximum of 82 moves
(just over 2.65 times the optimum).

IV. THE 15-PUZZLE

While the maximum number of moves required to solve
the 15-puzzle is known to be 80 (Briingger et al. [2]), a
table-based approach similar to that used in Section III is
technologically infeasible for the average user since the 15-
puzzle has 15! =~ 1.3 x 1012 solvable configurations, which
at 2 bits per configuration would require a table of size of
approximately 327GB. Our aim is to reduce this table size at
small cost to the solution length.

Observing the optimal solutions for the 8-puzzle on some
random examples, one is struck by the fact that many of them
solve the first row and column, then proceed to the remaining
2 X 2 sub-puzzle while leaving the first row and column in



Fig. 6: Stage 1 of the 15-puzzle in its solved configuration
(left) and a random configuration (right).

place. This makes sense because the first row and column are
the tiles that are furthest away from the home position of the
blank in the lower right-hand corner. Furthermore, most of
these either solve the first row then the first column while
leaving the first row in place, or vice-versa.

We propose to solve the 15-puzzle in much the same way,
that is, solve the first row (which we will call Stage I,
Section IV-A), then solve the first column without disturbing
the first row (which we will call Stage 2, Section IV-B), and
finally solve the remaining 3 x 3 sub-puzzle optimally using
the method of Section III. We repeat with the roles of “row”
and “column” interchanged, and take the shortest solution of
the pair. Section IV-C will analyze the resulting algorithm

A. Stage 1 of the 15-Puzzle

Optimal solutions for the first row of the 15-puzzle can be
computed using the breadth-first search code from Section III
with the appropriate start vertex, as follows. Consider a variant
of the 15-puzzle in which only tiles 1 through 4 are numbered.
The remaining tiles are unnumbered and may be placed in any
position in the solved configuration provided the first row is
in place. Fig. 6 shows two examples.

Stage 1 configurations can represented as hexadecimal num-
bers by using digit 4 for all of the tiles not in the first row
when solved, for example, the solved configuration of Fig. 6
is represented by

0x012344444444444F
and the right-hand configuration is represented by
0x444443204414444F.

The solution graph for Stage 1 of the 15-puzzle is defined
similarly to that of the 8-puzzle described in Section III. We
then run breadth-first search on this solution graph starting
from vertices

0x0123F4444444444F
0x01234F444444444F
0x012344F44444444F
0x0123444F4444444F

which represent the first row tiles in the correct places and
the blank in the second row. Note that the breadth-first
search algorithm works without modification on multiple start

0 3 6 9 1215 18 21 24 27 30 33 36 39 42 45

Fig. 7: The distribution of shortest solution lengths for Stage
1 of the 15-puzzle. The horizontal axis shows the possible
lengths of shortest paths, and the vertical axis shows the
number of puzzle configurations that have a shortest path of
that length, measured in tens of thousands.

Fig. 8: Stage 2 of the 15-puzzle in its solved configuration
(left) and a random configuration (right).

vertices. (To see this, imagine a new ghost start vertex with
edges of cost zero leading to the multiple start vertices.)

Stage 1 of the 15-puzzle has 16!/11! = 524, 160 configura-
tions. Since the entries are so sparse, the best way of storing
them is to use a list of configuration-move pairs managed using
a hash table. Therefore at 9 bytes per entry, a solution table
would require approximately 4.5MB.

Our implementation took 1031ms of CPU time to run
using a single core of an Intel® Core™ i7-3930K CPU @
3.2GHz to determine the shortest solutions for all 524,160
configurations of Stage 1 of the 15-puzzle. Fig. 7 shows the
distribution of shortest solution lengths. We found that 46
moves are required in the worst case, that the expected number
of moves is approximately 26.87.

B. Stage 2 of the 15-Puzzle

Stage 2 of the 15-puzzle has only tiles 14, 5, 9, and 13
numbered, but tiles 1, 2, 3, and 4 are in their solved positions
and are not free to move. Fig. 8 shows two examples. Stage 2
configurations can be represented as hexadecimal numbers by
using digit 5 for all of the tiles not in the first row when solved.
For example, the solved configuration of Fig. 8 is represented
by

0x012345559555D55F
and the right-hand configuration is represented by

0x0123555945D5555F.



12

- Jﬂmﬂm I

0 2 4 6 8 1012141618202224 26283032

Fig. 9: The distribution of shortest solution lengths for Stage
2 of the 15-puzzle. The horizontal axis shows the possible
lengths of shortest paths, and the vertical axis shows the
number of puzzle configurations that have a shortest path of
that length, measured in hundreds.

The solution graph for Stage 2 of the 15-puzzle is also defined
similarly to the above.

We run breadth-first search on the solution graph for Stage
2 of the 15-puzzle with start vertices

0x01234F558555C555F
0x012345558F55C555F
0x012345558555CC55F

representing the first row and column tiles in the correct
places and the blank in the second column but not the first
row. We also need to add a line of code to ensure that only
configurations with the first row in place get inserted into the
breadth-first search vertex queue.

Stage 2 of the 15-puzzle has 12!/8! = 11,880 configura-
tions, and therefore at 9 bytes per entry, a solution table would
require approximately 104KB.

Our implementation took 93ms of CPU time to run using a
single core of an Intel® Core™ i7-3930K CPU @ 3.2GHz to
determine the shortest solutions for all 11,880 configurations
of Stage 2 of the 15-puzzle. Fig. 9 shows the distribution of
shortest solution lengths. We found that 32 moves are required
in the worst case, and that the expected number of moves is
around 18.83.

C. Complete Solution of the 15-Puzzle

Our new algorithm, which solves in turn Stage 1 of the 15-
puzzle, Stage 2 of the 15-puzzle, then the 8-puzzle therefore
uses 4.7MB of tables to solve the 15-puzzle in at most
108 moves with expected number of moves at most 67.75
under the assumption that our solution to Stage 2 of the 15-
puzzle leaves the remaining 8-puzzle in a state that is close
to being drawn uniformly at random from the space of all
configurations, which we will call the Uniform Distribution
Assumption. These results are compared in Table II to the
theoretical optimum bound from Briingger et al. [2], and the
expected and worst-case upper bounds of 2.66n® and 5n3
from [6] and [7], respectively. Re-running the experiment of
Section III for solutions of this type, we find that the worst case
is 30 (down from 31), the average case is 22.04 (up slightly
from 21,97), and the distribution of solution lengths is only
slightly different (compare Fig. 10 to Fig. 2).

15 —

O T T 1 1 1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 10: The distribution of shortest solution lengths for the
8-puzzle when the blank is in the first row or column. The
horizontal axis shows the possible lengths of shortest paths,
and the vertical axis shows the number of puzzle configu-
rations that have a shortest path of that length, measured in
thousands. (Compare to Fig. 2)

Expected | Max
Part 1 26.87 46
Part 2 18.83 32
3x3 22.04%* 30
Total 67.75% 108

TABLE I: Theoretical number of moves for the new 15-puzzle
algorithm. The starred value is under the Uniform Distribution
Assumption.

Expected | Max

Optimum ? 80
New 67.75% 108
Greedy 171 320

TABLE II: Theoretical number of moves made by the new 15-
puzzle algorithm compared to the optimal number of moves
from Briingger et al. [2] and the number of moves made by
the greedy algorithm. The starred value is under the Uniform
Distribution Assumption.

Min Mean Max
New 20 65.21 95
Greedy 40 118.16 195

TABLE III: Experimental number of moves made by the new
15-puzzle algorithm compared to the greedy algorithm on 10°
random configurations.

We ran the greedy algorithm against the new algorithm
on 10 random puzzle instances and found that in practice
the new algorithm uses 49% as many moves as the greedy
algorithm in the worst case and 55% as many moves on
average (see Table IIT). The Uniform Distribution Assumption
was validated by these results. While the greedy algorithm
averaged less than 0.04ms per solution, the new algorithm
averaged less than 0.07ms per solution on the aforementioned
Intel® Core™ i7-3930K CPU @ 3.2GHz.

Some animations of the greedy algorithm and the new
algorithm solving the same random instances of the 15-puzzle
can be found online at the following URL.

http://larc.unt.edu/ian/research/15puzzle



V. CONCLUSION AND OPEN PROBLEMS

We have shown how to find 15-puzzle solutions of worst
case length 93 and expected length less than 66 in under
0.07ms per solution on current desktop computing hardware
using 4.7MB of tables. These numbers compare favorably
to the worst-case length upper bound of 80 from Briingger
et al. [2], and to the greedy algorithm of Parberry [6], [7]
which experimentally used 190 moves in the worst case and
118 moves on average on 10° random configurations. Open
problems include improving these figures, and determining the
average number of moves used in optimal length solutions to
the 15-puzzle.

REFERENCES

[1] L. E. Hordern, Sliding Piece Puzzles. Oxford University Press, 1986.

[2] A. Briingger, A. Marzetta, K. Fukuda, and J. Nievergelt, “The parallel
search bench ZRAM and its applications,” Annals of Operations Research,
vol. 90, pp. 45-63, 1999.

[3] A. Reinefeld, “Complete solution of the eight-puzzle and the benefit of
node ordering in IDA*,” in Proceedings of the 13th International Joint
Conference on Artificial Intelligence, 1993, pp. 248-253.

[4] D. Ratner and M. Warmuth, “The (n? — 1)-puzzle and related relocation
problems,” Journal of Symbolic Computation, vol. 10, no. 2, pp. 111-137,
Jul. 1990. [Online]. Available: http://dx.doi.org/10.1016/S0747-7171(08)
80001-6

[5] D. M. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble mo-
tion on graphs, the diameter of permutation groups, and applications,” in
Proceedings of the 25th Annual Symposium on Foundations of Computer
Science, 1984, pp. 241-250.

[6] 1. Parberry, “A real-time algorithm for the (n? — 1)-puzzle,” Information
Processing Letters, vol. 56, pp. 23-28, 1995.

[71 ——, “Solving the (n? — 1)-puzzle in real time with %n?’ expected
moves,” Laboratory for Recreational Computing, Dept. of Computer
Science & Engineering, Univ. of North Texas, Tech. Rep. LARC-2014—
01, April 2014.

[8] E. F. Moore, “The shortest path through a maze,” in Proceedings of the
International Symposium on the Theory of Switching, 1959, pp. 285-292.

[9] C. Lee, “An algorithm for path connection and its applications,” IRE
Transactions on Electronic Computers, vol. EC-10, no. 3, pp. 346-365,
1961.

Ian Parberry received his PhD in Computer Science
from the University of Warwick in England in 1984.
He is currently a Professor in the Department of
Computer Science and Engineering at the Univer-
sity of North Texas. He is the author of seven
books and over 90 articles on subjects including
game programming, procedural content generation,
computer graphics, parallel computing, circuit com-
plexity, sorting networks, mathematical puzzles, and
neural networks.




