

Very Fast Real-Time Ocean Wave Foam
Rendering Using Halftoning

Mary Yingst, Jennifer R. Alford, and Ian Parberry

Technical Report LARC-2011-05

Laboratory for Recreational Computing
Department of Computer Science & Engineering

University of North Texas
Denton, Texas, USA

June 2011

Very Fast Real-Time Ocean Wave Foam Rendering Using Halftoning

Mary Yingst
Dept. of Computer

Science & Engineering
University of North Texas
maryyingst@my.unt.edu

Jennifer R. Alford
Digital Teapot, Inc.
gralford@acm.org

Ian Parberry
Dept. of Computer

Science & Engineering
University of North Texas

ian@unt.edu

ABSTRACT

We introduce an efficient method for emulating sea foam
dissipation suitable for use in real-time interactive en-
vironments such as video games. By using a precom-
puted dither array with controlled spectral characteris-
tics adopted from halftone research as a control mecha-
nism in the pixel shader, we can animate the appearance
of foam bubbles popping in a random manner while al-
lowing them to clump naturally.

Introduction

Real-time animation and rendering of ocean waves is of-
ten seen in video games, and adding foam to the waves
lends an added level of realism. We describe a fast
and effective method for rendering ocean wave foam by
augmenting traditional texture based foam saturation
methods with techniques from halftoning.

Takahashi et al. [6] and Thürey et al. [7] represent foam
as a particle system. Although this is visually pleas-
ing, it is computationally intensive. In large scale envi-
ronments such as the ocean it is more practical to use
faster texture based methods. Many methods of render-
ing foam rely on applying a texture of foam to the wa-
ter surface. These methods apply a texture using a foam
saturation, or density value to represent transparency of
the texture which is applied to a mesh representing the
water’s surface(see, for example, Jensen and Golias [2],
Jeschke, Birkholz and Schmann [3], and Kryachko [4]).
Li, Jin, Yin, and Shen [5] similarly apply a foam color
according to its density.

Real ocean foam consists of bubbles clumped together
by surface tension on the surface of the water. Foam
does not simply fade or become transparent as the bub-
bles dissipate. Traditional methods of foam generation
ignore the active nature of foam density where bubbles
pop over time. Since surface bubbles are either present
or not in an area of water, this binary nature lends itself
to the use of halftoning, a process used to reproduce im-
ages using patterns of black dots. Our use of halftoning
with a saturation function that changes over time causes

bubbles to appear to pop.

The remainder of this note is divided into five sections.
First we give a high-level overview of our approach.
Then we review in more depth our choice of foam satu-
ration function, our use of a halftoning mask generated
using methods from the halftoning literature, and how
we apply that mask in a pixel shader. Finally we con-
clude with a discussion of our results.

Overview of Our Approach

To generate foam on the surface of the water using a
foam saturation function, we must create the water sur-
face as a mesh. Each location on the water’s surface
has a calculable saturation value using this function.
The function must vary over time for the foam to ani-
mate and become more and less dense as waves pass and
change. In figure 1 we see that by applying halftoning
methods to a saturation function, we take an otherwise
smooth area of the function and create the randomness
expected when foam generates and dissipates. Halftone

Figure 1: By replacing the application of a foam texture
with a white tone we see that applying our method cre-
ates randomness on the right in the otherwise smooth
saturation results pictured on the left.

masks, or dither arrays, are arrays of values that have
a one-to-one correspondence with pixels in an image, or
in our application, a texture. Each value of the halftone
mask is used as a threshold against the corresponding
texture pixel to produce a binary output image that in-
dicates, at each pixel position, whether the texture falls
above or below the threshold. This process is commonly

referred to as thresholding. Halftone masks are charac-
terized by the binary pattern that results when thresh-
olded against a constant image, or texture. Choosing
threshold value values at each mask position is non-
trivial. Ulichney [8] provides a classic study of mask
design and describes widely used metrics, based on the
Fourier Transform, to characterize masks by their ra-
dially averaged power spectrum (RAPS), a measure of
energy at different frequency bands, and anisotropy, a
measure of radial symmetry. While halftoning can be
accomplished with a variety of computational methods,
we restrict ourselves to the use of masks because, as
point operations, they are computationally efficient and
naturally suited to pixel shader operations.

We depart from the traditional use of halftoning in print-
ing and image display, which seeks to reduce visually
objectionable noise in image reproduction, and instead
we use a halftone mask to add noise. We draw on re-
cent work in halftone mask design by observing that it
is possible to design masks to produce lumping binary
patterns which are reminiscent of the clumping of sea
foam. We also observe that the binary nature of the
threshold output is well-suited to simulate foam bubble
popping when the mask is fixed per frame but the un-
derlying image is not. In this work, we present a novel
way to use halftone masks in conjunction with a satu-
ration function and a texture to simulate foam and the
popping behavior of foam. Further, we observe that the
difference between the threshold value and an image or a
texture provides a magnitude at each pixel position that
we use as a transparency value for additional realism.

We use halftone masks that have been generated using
a symmetric Gaussian function to filter white noise as
described in Alford and Sheppard [1]. Gaussian filtering
applies a two-dimensional Gaussian function to an im-
age. σ is a value in the Gaussian function that denotes
the width of the curve in the function; as σ increases,
the width of the curve increases.

We simulate the effect of foam bubbles popping by find-
ing the saturation of foam on the water’s surface and
applying a precomputed halftone mask to it. We use a
modified version of the vertex shader outlined in a pa-
per by Van Dresek III, Bookout, and Lake [9] to create
parametric waves upon which to apply our foam. The
next two sections will describe the saturation function
and the halftone mask in more detail.

The Saturation Function

Kryachko [4] uses the following foam saturation func-
tion which is dependent on ocean height. H0 is base
height, H is height, and Hmax is height where foam is

maximum.

f(x) =
H −H0

Hmax −H0

Figure 2: Foam with Kryachko’s saturation function.

Although Kryachko’s function achieves somewhat at-
tractive results (see Figure 2 for example), the function
results in a symmetric foam distribution, whereas we
wish to model foam that is created by turbulence at the
front of the wave and fades away behind it. Knowing
the target foam density along the wave shape, we chose
to apply etan(x) to the same vector and frequency used
to determine wave shape.

Figure 3: etan(x), sin(x)

We use the following formulae from Van Dresek III,
Bookout, and Lake [9] for the height y of the wave:

y = A((sin(θ(x, z)) + 1)/2)K

θ(~v) = (~v · ~k)2π/λadj + φt

φ = 2sπ/λ,

and so we use θ(~v) to also generate the periodic function.

f(~v) = e− tan((~v·~k)2π/λadj+φt)),

where ~v = (x, z) is position, ~k is the wave direction, s is
the speed of the wave, t is time, K is wave slope, A is
wave amplitude, λadj is wavelength adjusted for ocean
depth, and λ is original wavelength.

Since we are overlaying this function on the sine func-
tion that determines wave shape, we need to modify the
formula slightly to align the foam with the waves. In

Figure 3 we see that etan(x) is twice as frequent as sin(x),
so we divide θ(x, z) by 2. Also to align the highest part
of our function with the front part of the sine wave we
add π/2. Our final formula is as follows, and gives a
attractive saturation of foam starting at the wave front
and fading behind it.

f(x) = (e− tan((~v·k)π/λadj+φt/2)+π/2))/C,

where C is a user defined constant that governs the in-
tensity of the foam. (We use C = 4 for convenience, but
this value may be tuned by the designer.)

Saturation is computed as follows. Adjwavelength, and
phaseC are calculated in the vertex shader and the val-
ues are interpolated for use in the pixel shader.

f l o a t getmysaturat ion (f l o a t 2
wavedi rect ion , f l o a t 2 xzpos i t i on ,
f l o a t Adjwavelength , f l o a t phaseC)

{
f l o a t r e s u l t =

dot (wavedi rect ion , x zpo s i t i on)
∗6 .28 f /Adjwavelength ;

r e s u l t = r e s u l t + phaseC∗gTimeNow ;
r e s u l t = pow(2 .718 f ,−1.0 f ∗
tan ((r e s u l t /2 .0 f)+ 1 .07 f)) / 4 . 0 f ;
r e turn r e s u l t ;

}

To pass values from the vertex shader we simply define
an extra variable in the vertex output with a TEXCO-
ORD semantic. Then the vertex shader sets the required
values as follows:

s t r u c t VertexOutput
{

. . .
f l o a t 4 impVars : TEXCOORD4;

}

VertexOutput VS (. . .)
{

VertexOutput OUT = (VertexOutput) 0 ;
. . .
OUT. impVars [1]= adjustedWavelength ;
OUT. impVars [0]= phaseConstant ;
OUT. impVars [2] = Po [0] ; // xpo s i t i on
OUT. impVars [3] = Po [2] ; // zp o s i t i o n

}

f l o a t 4 PS(VertexOutput IN) : COLOR
{

f l o a t sa turated=getmysaturat ion
(d i r e c t i on , f l o a t 2 (IN . impVars [2] ,
IN . impVars [3]) , IN . impVars [1] ,
IN . impVars [0]) ;

. . .
}

The Halftone Mask

We use a halftone mask to threshold the saturation func-
tion to create dissipation through bubble popping. As

saturation decreases over time at a specific location, the
value will approach and pass the threshold used in our
mask. While the saturation value is above the thresh-
old, the foam will be present, but as time passes and the
value decreases, eventually the foam will pop and diss-
appear. Since bubbles in foam clump, we must choose
a halftone mask that produces clumps in the resulting
dot patterns. Clumpiness, or clustering, can be seen in
how close together some of the foam is while in other
areas there are gaps.

Alford and Sheppard [1] show a variety of halftone masks
created using radially symmetric Gaussian filters. We
used their masks created using filters having σ ranging
from 1.5 to 24 to produce the images in Figure 4 col-
umn 1. In Figure 4 we can see that the higher the σ,
the closer together some of the dots are. By analyzing
the RAPS we see that as σ increases, first oscillation
is dampened in the high frequencies, then the values
of the high frequency region is greatly reduced (Alford
and Sheppard [1]). The results of this can be seen in
the increased clustering and clumping behavior of the
dot patterns. We found σ = 24 gives adequate visual
clusters of foam.

(a) σ = 1.5

(b) σ = 6

(c) σ = 24

Figure 4: Halftone masks created by Gaussian filters
having σ ranging from 1.5 to 24, with corresponding
RAPS (images courtesy Alford and Sheppard [1]).

Applying the Mask

To create the halftoned saturation function h(u, v)
where u, v are texture coordinates and h(u, v) is a
float4 RGBA color value at that position, we first cre-
ate a texture to contain the mask information so that
the data can be imported into the pixel shader. Given
a 512 × 512 halftone mask, a 512 × 512 pixel texture is
generated. This texture, when tiled across the surface
of the water, has a corresponding u, v texture coordi-
nate for each ~v = (x, z) position on the water. The
mask value m(u, v) can then be used to threshold the
saturation function f(x, z) as follows:

h(u, v) =

{
(0, 0, 0, 1) if f(x, z) ≤ m(u, v)

(1, 1, 1, 1) if f(x, z) > m(u, v)
(1)

Figure 5: Applying Equation 1 to the saturation func-
tion at left gives the image at right.

We can then create a fading halftoned saturation func-
tion, g(u, v), so the dots fade before they pop. We do
this by taking the difference between saturation and
mask number. Figure 1 shows the results of applying
halftoning with fading to the saturation function.

g(u, v) =

(0, 0, 0, 1) if f(x, z) ≤ m(u, v)

clamp(f(u, v)/2−
m(u/v), 0, 1) if f(x, z) > m(u, v)

(2)
Finally we apply t(u, v), the foam texture to generate
the final halftoned, textured, and faded image j(u, v).

j(u, v) =

(0, 0, 0, 1) if f(x, z) ≤ m(u, v)

clamp(f(u, v)/2−
m(u/v), 0, 1)t(u, v) if f(x, z) > m(u, v)

(3)

Figure 6: Coastline image using our new halftoning
method, Equation 3.

Given a sampler for the halftone mask texture,
MaskSampler; a sampler for the foam texture,
SAMP FoamTexture; and a sampler for the water sur-
face texture, SAMP WaterTexture; the following code
finds the resulting color for the water’s surface. The
higher TEXscale or MASKscale is, the smaller the tiled
texture will appear. A value of 400 for MASKscale gives
suitably sized dots when using a 512 × 512 pixel mask.

// get water and foam texture c o l o r
f l o a t 4 textureSamp = tex2D (

SAMP WaterTexture ,
IN . TexCoord1∗TEXscale) ;

f l o a t 4 foamSamp = tex2D (
SAMP FoamTexture ,
IN . TexCoord1∗TEXscale) ;

// get the th r e sho ld from the mask
f l o a t masknumber=(tex2Dlod (

MaskSampler , f l o a t 4 (IN . TexCoord1 . xy
∗MASKscale , 0 , 0))) ;

// th r e sho ld the s a tu r a t i on value
i f (! ((sa turated)>(masknumber))){

foamSamp [0] = 0 ;
foamSamp [1] = 0 ;
foamSamp [2] = 0 ;

}

// f i nd the value f o r fad ing the foam
f l o a t d i f f e r e n c e = clamp (saturated
− masknumber , 0 .15 f , 3 . 0 f) ;

// get the f i n a l foam value
foamSamp = d i f f e r e n c e ∗ foamSamp ;

//add the value to the water t ex tu re
//and clamp to a va l i d c o l o r
f l o a t 4 r e s u l t =clamp ((textureSamp+

foamSamp) , 0 , 1) ;
r e s u l t [3] = 1 .0 f ;

Results

Figure 7(a) shows the traditional method of fading a
foam texture according to a saturation function, simi-
lar to Kryachko [4]. Figure 7(b) shows the saturation
halftoned using Equation 1 and no other functions ap-
plied. This method shows a realistic popping effect, but
the foam is too harsh and white. Figure 7(c) shows our
halftoning method in combination with a foam texture
using Equation 3.

(a) Using a foam texture.

(b) Using a halftone mask to determine foam location.

(c) Using a halftone mask with a foam texture.

Figure 7: The results of using 3 different methods with
the same settings (heightmap, wave speed, direction,
and amplitude).

Graphics Card Textured Halftoned

NVidia 8800 65.5fps 65.0fps
NVidia GeForce GT320m 80.4fps 78.2fps
Intel HD Graphics 3000 85.0fps 84.5fps

Table 1: Comparison of rendering frame rates in frames
per second (fps).

Figure 8: Scene used for measuring frame rates.

We performed some experiments to obtain a preliminary
benchmark for the extra computation load required by
our new halftoning technique (Figure 7(c)) to the tradi-
tional texturing technique (Figure 7(a)). We ran both
algorithms for five minutes using NVidia Composer, us-
ing FRAPS to measure average frames-per-second. The
scene rendered in all experiments is shown in Figure 8.
The results are shown in Table 1. We conclude that
the extra load on the video appears to be less that 3%
higher than traditional texture-fading techniques, which
is negligible.

Still pictures such as shown in Figure 7 and Figure 8 do
not adequately capture the full effect of our algorithm.
Figure 9 shows how foam bubbles fade and pop over
time in the wake of each wave. This can be seen to
best advantage in an animation such as the one we have
placed online at [10].

Figure 9: Close up view of foam bubbles fading and
popping over time.

Conclusion and Further Work

Not only does our halftoning technique achieve our goal
of simulating foam dissipation in a real-time environ-
ment, but it also can be applied with little additional
cost to traditional texture based methods that obtain
foam saturation at the water’s surface. The saturation
function used must vary over time for the bubble pop-
ping effect to occur using the halftoning method.

Our method currently produces pixelation at close range
to the camera. One method for remedying this would
be a second pass of a pixel shader to smooth the edges
of the generated texture, which we leave as future work.

References

[1] Jennifer R. Alford and David G. Sheppard. “Ap-
proximating Poisson Disk Distributions by Means
of a Stochastic Dither Array”. In: EG UK Theory
and Practice of Computer Graphics. 2010.

[2] Lasse Staff Jensen and Robert Golias. Deep-Water
Animation and Rendering. Presented at Game
Developers Conference, Europe. 2001. url: www.
gamasutra.com/gdce/2001/jensen/jensen_01.

htm.

[3] S. Jeschke, H. Birkholz, and H. Schmann. “A Pro-
cedural Model for Interactive Animation of Break-
ing Ocean Waves”. In: Proceedings of WSCG 2003.
WSCG. 2003.

[4] Yuri Kryachko. “Using Vertex Texture Dis-
placement for Realistic Water Rendering”. In:
GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose
Computation (2005).

[5] Yongjin Li et al. “Simulation of shallow-water
waves in coastal region for marine simulator”.
In: Proceedings of The 7th ACM SIGGRAPH In-
ternational Conference on Virtual-Reality Contin-
uum and Its Applications in Industry. ACM, 2008,
15:1–15:5.

[6] Tsunemi Takahashi et al. “Realistic Animation
of Fluid with Splash and Foam”. In: Computer
Graphics Forum 22.3 (2003), pp. 391–400.

[7] N. Thürey et al. “Real-time simulations of bubbles
and foam within a shallow water framework”. In:
Proceedings of the 2007 ACM SIGGRAPH Euro-
graphics Symposium on Computer Animation. Eu-
rographics Association, 2007.

[8] Robert Ulichney. Digital Halftoning. Cambridge,
Mass: The MIT Press, 1987.

[9] J. Van Drasek III, D. Bookout, and A. Lake. Real-
Time Parametric Shallow Wave Simulation. 2010.
url: http : / / software . intel . com / en - us /

articles / real - time - parametric - shallow -

wave-simulation/.

[10] Mary Yingst, Jennifer R. Alford, and Ian Par-
berry. Sea Foam. 2011. url: http://larc.unt.
edu/ian/research/seafoam/.

BIBLIOGRAPHY

MARY YINGST is an MS student in the Department
of Computer Science and Engineering at the University
of North Texas. Her research interests include graphics
for game development.

JENNIFER R. ALFORD is President of Digital
Teapot, Inc. and a Research Associate in the Labora-
tory for Recreational Computing at the University of
North Texas. Her research interests include halftoning.

IAN PARBERRY is a Professor in the Department of
Computer Science and Engineering at the University of
North Texas. With over 30 years experience in research
and education, he helped pioneer the academic study of
game development in 1993. His undergraduate game de-
velopment program was ranked in the top 50 out of 500
in North America by The Princeton Review in 2010. He
is on the Editorial Boards of the Journal of Computer
Game Design and Development, IEEE Transactions On
Computational Intelligence and AI In Games, and En-
tertainment Computing, and serves as the Secretary of
the Society for the Advancement of the Science of Digi-
tal Games, which organizes the Annual Foundations of
Digital Games conference.

	LARC-2011-05 cover
	Abstract

