

Fast, Believable Real-time Rendering of Burning
Low-Polygon Objects in Video Games

Dhanyu Amarasinghe and Ian Parberry

Technical Report LARC-2011-04

Laboratory for Recreational Computing
Department of Computer Science & Engineering

University of North Texas
Denton, Texas, USA

June 2011

Fast, Believable Real-time Rendering of Burning
Low-Polygon Objects in Video Games

Dhanyu Amarasinghe
Dept. of Computer Science & Engineering

University of North Texas
dhanyuamarasinghe@unt.edu

Ian Parberry
Dept. of Computer Science & Engineering

University of North Texas
ian@unt.edu

ABSTRACT
We present a framework for modeling the deformation and
consumption of low-polygon models under combustion while
generating procedural fire. Many recent publications have
shown variety of deformation techniques involved in com-
puter graphics using the GPU. However, deformation of
low-polygon models, (which are prevalent in video games)
is quite challenging since it is hard to maintain realism. We
present a method for emulating the consumption and defor-
mation of low-polygon models using real-time mesh refine-
ment. Our focus is on trading realism for computation speed
so that processing power is available for other tasks, such as
might arise in the current generation of video game. We
have implemented and tested our method on a relatively
modest GPU using CUDA. Our experiments suggest that
our method gives a believable rendering of the effects of fire
while using only a small fraction of CPU and GPU resources.
Our method also allows for quick and easy LOD (level-of-
detail) rendering of burning objects.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—hierarchy and geometric transformations,
animation; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—animation; I.6.8 [Simulation and
Modelling]: Type of Simulation—animation

General Terms
Algorithms, Experimentation

Keywords
Hardware acceleration, volume rendering, freeform deforma-
tion, procedural, generation, low-polygon modeling, CUDA,
refinement, subdivision.

1. INTRODUCTION
Model deformation is an essential part of maintaining the re-
alism of physical objects in video games. While high quality

graphics is an inescapable necessity for the modern video
game, developers must choose detailed structure of game
models carefully due to the limitations of hardware resources
and processing power needed in real time rendering. One of
the key features of such detailed structure is a number of
polygons per model. Low-polygon models are typically used
as much as possible, with their deficits hidden by a choice of
pragmatic textures. As a tradeoff between quality and per-
formance, many game developers use extremely low-polygon
models for most of the flat surfaces in the game environment
such as doors, windows, and walls. Since deformation of
such low-polygon models while maintaining realism is quite
thorny, developers commonly resort to model swapping tech-
niques.

In this paper we consider real-time emulation of the defor-
mation and consumption of low-polygon models due to com-
bustion. Fire simulations may be used effectively to increase
the reality of visual effects in computer animations. Real-
time triangle subdivision is a useful technique, but complete
subdivision of each and every model is not practical in real
time. We extend the method discussed in Amarasinghe and
Parberry [2, 4] to introduce a real-time refinement method
that can be used in deformation and real-time rendering of
burning low-polygon models while maintaining performance
and realism. Our aim is to increase believability by a large
amount while increasing computation load only minimally.

The structure of the remainder of this paper is as follows.
In Section 2 we describe some related work. In Section 3 we
describe our representational framework for the subdivision
and deformation, and the key features of such a strategy.
Section 4 describes our approach to implementing LOD. Sec-
tion 5 describes the results of a CUDA implementation of
our algorithm. Section 6 contains the conclusion and fur-
ther work. See also our fire web page (Amarasinghe and
Parberry [3]) for more images and a video demonstration.

2. PREVIOUS WORK
In Amarasinghe and Parberry [2, 4] we describe a technique
for emulating the consumption and deformation of high-
polygon models due to fire. The obvious way to extend this
technique to low-polygon models is to use real-time mesh
refinement, subdividing triangles only when necessary.

There is a great amount of prior work on subdivision surface
schemes for fast mesh refinement in real-time applications.
Wicke and Ritchie [16] introduce the technique of mesh re-

Figure 1: The consumption of a low-polygon model and the spread of procedural fire.

finement to capture detailed physical behavior in simulating
fractures by subdividing mesh elements. Hormann and Lab-
sik [8, 11] discuss what kind of parameterizations are optimal
for remeshing. Peyré and Cohen [13] describe a method for
adaptive mesh refinement for an expanding heat boundary.
The papers of Guo and Li [9], and He and Schaefer [10]
discuss parametric subdivision of mesh surfaces. Giraud-
Moreau, Borouchaki, and Cherouat [5] perform real time de-
formation by applying remeshing to selective material. Ko-
vacs and Mitchell’s crease approximation method [12] also
contains useful information about surface subdivision. The
survey paper of Alliez and Ucelli [1] on remeshing of surfaces
is also quite useful.

Relatively little work has been published about hardware
assisted implementation of subdivision schemes. Boubekeur
and Schlick [5, 6] introduced useful mesh refinement tech-
niques using modern GPUs. Schive, Tsai, and Tzihong [14]
use the GAMeR technique using GPUs for adaptive mesh
refinement in astrophysics. Fan and Cheng [7], and Fün-
fzig and Müller [15] discuss a few techniques for subdivision
using modern GPUs.

3. SUBDIVISION
Graphics Processing Units (GPUs) are no longer limited to
scene rendering, but have also have been used for general
purpose computing. Technology such as CUDA (Compute
Unified Device Architecture) developed by NVIDIA pro-
vide a platform for implementing general purpose compu-
tation on GPUs. However, as mentioned by Boubekeur and
Schlick [6], there are limitations to data translation from
CPU to GPU, since current graphics hardware is unable to
generate more polygons than those sent through the graphics
bus by the application running on the CPU. Consequently,
we have adapted Boubekeur and Schlick’s [6] Generic Adap-
tive Mesh Refinement (GAMeR) technique to procedurally
create additional inner vertices on-the-fly.

This section is divided into three subsections. The first sub-
section describes the mesh refinement process and its prop-
erties. The second section introduces the concept of eligible
triangles using barycentric coordinates. The third subsec-
tion shows how these can be used to perform triangle defor-
mation.

3.1 Refinement Patterns and Properties
Although our approach is valid for other polygonal shapes,
we only consider the case of triangular meshes in this pa-
per, since that is what is primarily used in video games.
We pre-compute all of the useful refinement configurations

Figure 2: The Adaptive Refinement Pattern show-
ing the level subdivisions for a single triangle.

of a single triangle using a technique called uniform decom-
position, in which the subdivision takes place in all of the
cells recursively. We use an isotropic template that divides
each triangle into half for five recursive levels in depth as
illustrated in Figure 2. This resulting Adaptive Refinement
Pattern (ARP for short) is stored once on the GPU as a
vertex buffer object.

Recall that our objective is not to subdivide each and every
triangle in the object. Our aim is to subdivide only when
necessary, and prior to deformation. We declare some at-
tributes for each of the subdivided triangles in Table 1. One
of the important attributes in this set is the status of the
triangle. The values -1, 0, 1, 2 represent the triangle’s status
as inactive, initial, active, and processed respectively. The
renderer will draw only the final ARP of active and processed
triangles generated by each coarse triangle. We will discuss
the rest of these attributes along with our deformation al-
gorithm in Section 3.3.

After loading the ARP and its attributes to the vertex buffer,
we need to map ARP coordinates to the corresponding coarse
polygon using a displacement map similar to Figure 2. Un-
like Boubekeur and Schlick [6], we record the final coordinate
set into the GPU since we have yet to deform our vertices
prior to rendering. At this point we apply ARP to the coarse
polygon only if it is eligible to proceed to the next level of
subdivision. This eligibility depends upon the location of
the heat boundary relative to the triangle.

Attribute Values Description

id Integer Track siblings/parent
SetLevel 1, 2, 3, 4, 5 Depth of the division
Siblings Integer Number of siblings
Parent Integer Parent id
Status −1, 0, 1, 2 Status of the triangle

Table 1: ARP attributes.

3.2 Barycentric Points & the Heat Boundary
The temperature of a burning object in the real world changes
over both time and space. Temperature increase due to com-
bustion influences the mechanical behavior of the object, and
the thermal conductivity of the object influences the thermal
response.

To speed up computation, we approximate the expansion
of the heat boundary by calculating it around a single fixed
point, following our heat boundary model described in Ama-
rasinghe and Parberry [2, 4]. The approximated heat bound-
ary expansion is given by:

R2 = | sin(πΘ/∆r) + sin(πΘ) +

ψ((x− x0)2 + (y − y0)2 + (z − z0)2)|,

whereR = r+∆r, the radius r incremented by ∆r in each ∆t
time period. The angle Θ is a random value that makes the
expanding heat boundary irregular in shape. The location
of the heat source is (x0, y0, z0). However, the value of heat
index constant ψ from Amarasinghe and Parberry [2, 4],
which is supposed to be a constant that depends only on
the size of the coarse triangles of the model, is no longer
fixed. Therefore, we let the designer set ψ depending on
how many levels of subdivision are planned.

It remains to decide which coarse triangles are eligible for
subdivision. This has to be a function of the expanding heat
boundary. Furthermore, the subdivision has to take place
prior to the deformation process. Our solution is to send
a virtual heat wave through the model prior to the actual
heat boundary expansion. This creates an area in addition
to the three initial heat boundary areas described in Fig-
ure 3 of Amarasinghe and Parberry [2]. Since the introduced
boundary expansion takes place prior to the three original
expanding boundaries (see Figure 3), we can proceed with
the subdivision of qualified triangles before the deformation
process begins.

Since we are using a single source heat boundary, tempera-
ture at all points will depend on the distance from the heat
source at (x0, y0, z0). If this point is in the middle of one
of the coarse triangles, the triangle will not be eligible for
subdivision until the virtual heat boundary hits one of its
vertices. To avoid such issues we represent each triangle
using barycentric coordinates as follows.

Suppose point P = (x, y, z) is given by:

Figure 3: Heat boundary areas and barycentric
point sets.

x = λ1x1 + λ2x2 + λ3x3

y = λ1y1 + λ2y2 + λ3y3

z = λ1z1 + λ2z2 + λ3z3,

where λ1,λ2 and λ3 are area parameters such that

λ1 + λ2 + λ3 = 1

.

We need to calculate the barycentric coordinates for non-
eligible triangles only, where eligible triangles are those that
are close to the heat boundary. The following algorithm
returns true if coarse triangle T is eligible.

for each coarse triangle T
if T is not eligible then get barycentric point set P

for each barycentric point set P
if P is inside the heat boundary

return true

3.3 Deformation
After applying ARP to the eligible triangle, we next ap-
ply deformation techniques. Although our ARP arbitrarily
contains triangles of five levels in depth (see Figure 2), this
number can be changed in the obvious fashion by the de-
signer. Deformation applies only to the final level (in our
case, fifth level) status active triangles. At this point, ren-
dering all levels of triangles in the ARP will be costly and
wasteful. Instead, we choose which triangles to render using
the ARP attributes listed in Table 1.

The process can be described informally as follows. Initially,
the coarse triangles of the model are considered active (sta-
tus value 1) triangles, and all ARP triangles are initialized
as initial (status value 0) triangles. Each subdivided trian-
gle consists of three siblings and a parent. As our algorithm

Figure 4: The refinement hierarchy and deformation
applied to a 12-triangle model of a box.

proceeds, if one of the child triangles turns active, then the
parent will turn processed (status value 2) until all of its
children also become status active. Once its children have
all turned active, the parent triangle will change its status
from processed to inactive (from status value 2 to -1). More
specifically:

if triangle has SetLevel = 5 and Status = 0
if triangle is inside the heat boundary

Status := 1
Status of all siblings := 1
Status of parent := 2

if SetLevel <5 and Status >0
if sibling’s Status >-1

sibling Status := 1
parent Status := 2

if all children have Status = 1 and parent has Status = 2
parent Status := -1

In our high-polygon deformation algorithm (Amarasinghe
and Parberry [2, 4]), the displacement of each vertex de-
pends on the surrounding vertices. Therefore, to apply proper
calculation of deformation, we must let the subdivision pro-
ceed a few steps further before applying deformation to the
mesh. By doing so, we are able to calculate the proper
strength factors within the deforming triangles properly. Fig-
ure 4 illustrates the refinement hierarchy and deformation
applied to a low-polygon model of a box.

4. LEVEL SETS AND DISTANCE
In a game environment, objects located far from the viewer
need not be rendered in as much fine detail as those close
up. A significant speed-up can be obtained by having models
stored at various levels of detail (abbreviated LOD) ranging
from, for example, hundreds of triangles for objects in the
far distance to tens of thousands for close-up objects. These

Polygon Fully Our Speed-up
Count Subdivided Method Factor

10k 84fps 165fps 1.96
15k 76fps 159fps 2.09
20k 63fps 153fps 2.43
50k 48fps 60fps 1.25

Table 2: Frame rate of fully subdivided model versus
our approach.

variants of the model are usually created by the artist, al-
though procedural methods do exist.

Our algorithm allows us to implement LOD for burning ob-
jects by controlling the level of adaptive refinement of the
coarse mesh triangles. We calculate the distance between
object and the player in the CPU and pass it to the GPU
as a parameter. Level adjustment is decided and passed to
the appropriate ARP before rendering.

For a solid object the level of refinement is directly pro-
portional to the distance. However, surface removal and
deformation of a burning object makes it slightly more chal-
lenging to maintain a smooth transition between level swaps.
Define the burn level of a model as the number of triangles
of the model that have been consumed by fire (after Ama-
rasinghe and Parberry [2, 4]). We then use the following
algorithm to determine whether to render triangle T .

if number of children of T with
higher burn level than T is ≥ 2
and SetLevel ≥ 5

then hide T
else show T

Figure 5 illustrates our burning box model at different LODs.

5. EXPERIMENTS
The images of a burning box shown in this paper are screen-
shots from a CUDA implementation of our algorithm applied
to a model with 12 triangles. The flames are generated us-
ing 2000 fire particles and 500 smoke particles. The advan-
tage of such a system is clear when comparing the resources
required to deform a completely subdivided model versus
deforming a low-polygon model using our method. Table 2
shows the frame rates of the animation when our algorithm
is implemented in CUDA on relatively modest hardware; An
Intel R©CoreTM2 Duo CPU P8400 @ 2.26GHz processor with
an NVidia GeForce 9800 GTS graphics card. This perfor-
mance will of course be much better on the current genera-
tion of graphics hardware, but that is not our aim. Our aim
is to provide detail sufficient to trigger willing suspension of
disbelief at a relatively low cost in computation load.

The outcome of these experiments shows that our method
results in doubling the frame rate. Therefore, we believe
this approach is a better alternative than subdividing the
complete model when it comes to deforming low-polygon
models.

Figure 5: Real-time computation of LOD for a burning object.

6. CONCLUSION AND FUTURE WORK
We have proposed a method for the real-time deformation
and consumption of a low-polygon model during combustion
by procedurally generated fire. By doing so, we have ex-
tended our work in Amarasinghe and Parberry [2, 4] to low-
polygon models. We have performed simulation of real-time
deformation and consumption of any model regardless of the
size of the triangles. We have focused on the performance
with a reasonable amount of realism sufficient to trigger will-
ing suspense of disbelief in the game player. Our simulations
have performed well on a model with low-polygon count and
large triangles.

Most of the models used in video games appear to be shell
models, with a hollow interior. Deformation of shell models
is different from solid models. We intend to investigate the
extension of our method to solid models, and to investgate
a better approximation to heat boundary expansion.

7. REFERENCES
[1] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene.

Recent advances in remeshing of surfaces. Shape
Analysis and Structuring, pages 53–82, 2008.

[2] D. Amarasinghe and I. Parberry. Towards fast,
believable real-time rendering of burning objects in
video games. Technical Report LARC–2010–04,
Laboratory for Recreational Computing, Dept. of
Computer Science & Engineering, Univ. of North
Texas, October 2010.

[3] D. Amarasinghe and I. Parberry. Fire reloaded,
http://larc.unt.edu/ian/research/fire2/, 2011.

[4] D. Amarasinghe and I. Parberry. Towards fast,
believable real-time rendering of burning objects in
video games. In Proceedings of the 6th Annual
International Conference on the Foundations of
Digital Games, 2011.

[5] H. Borouchaki, P. Laug, A. Cherouat, and
K. Saanouni. Adaptive remeshing in large plastic
strain with damage. International Journal for
Numerical Methods in Engineering, 63(1):1–36, 2005.

[6] T. Boubekeur and C. Schlick. Generic mesh
refinement on GPU. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, pages 99–104. ACM, 2005.

[7] F. Fan and F. Cheng. GPU supported patch-based
tessellation for dual subdivision. In 2009 Sixth
International Conference on Computer Graphics,
Imaging and Visualization, pages 5–10. IEEE, 2009.

[8] M. Floater and K. Hormann. Surface
parameterization: A tutorial and survey. Advances in
Multiresolution for Geometric Modelling, pages
157–186, 2005.

[9] X. Guo, X. Li, Y. Bao, X. Gu, and H. Qin. Meshless
thin-shell simulation based on global conformal
parameterization. IEEE Transactions on Visualization
and Computer Graphics, pages 375–385, 2006.

[10] L. He, S. Schaefer, and K. Hormann. Parameterizing
subdivision surfaces. ACM Transactions on Graphics,
29(4):1–6, 2010.

[11] K. Hormann, U. Labsik, and G. Greiner. Remeshing
triangulated surfaces with optimal parameterizations.
Computer-Aided Design, 33(11):779–788, 2001.

[12] D. Kovacs, J. Mitchell, S. Drone, and D. Zorin.
Real-time creased approximate subdivision surfaces.
In Proceedings of the 2009 Symposium on Interactive
3D Graphics and Games, pages 155–160. ACM, 2009.

[13] G. Peyré and L. Cohen. Geodesic remeshing using
front propagation. International Journal of Computer
Vision, 69(1):145–156, 2006.

[14] H. Schive, Y. Tsai, and T. Chiueh. Gamer: A graphic
processing unit accelerated adaptive-mesh-refinement
code for astrophysics. The Astrophysical Journal
Supplement Series, 186:457, 2010.

[15] V. Settgast, K. Müller, C. Fünfzig, and D. Fellner.
Adaptive tesselation of subdivision surfaces.
Computers & Graphics, 28(1):73–78, 2004.

[16] M. Wicke, D. Ritchie, B. Klingner, S. Burke,
J. Shewchuk, and J. O’Brien. Dynamic local
remeshing for elastoplastic simulation. ACM
Transactions on Graphics, 29(4):1–11, 2010.

	LARC-2011-04 cover 3
	paper

