

Procedural Generation of Sokoban Levels

Joshua Taylor and Ian Parberry

Technical Report LARC-2011-01

Laboratory for Recreational Computing
Department of Computer Science & Engineering

University of North Texas
Denton, Texas, USA

February, 2011

Procedural Generation of Sokoban Levels

Joshua Taylor
Dept. of Computer Science & Engineering

University of North Texas
JoshuaTaylor@my.unt.edu

Ian Parberry
Dept. of Computer Science & Engineering

University of North Texas
ian@unt.edu

ABSTRACT
We describe an algorithm for the procedural generation of
levels for the popular Japanese puzzle game Sokoban. The
algorithm takes a few parameters and builds a random in-
stance of the puzzle that is guaranteed to be solvable. Al-
though our algorithm and its implementation runs in ex-
ponential time, we present experimental evidence that it is
sufficiently fast for offline use on a current generation PC
when used to generate levels of size and complexity similar
to those human-designed levels currently available online.

Keywords
Procedural generation, Sokoban, puzzle.

1. INTRODUCTION
In puzzle games the level design can make the difference be-
tween a game that is trivially easy or completely impossible.
It is difficult to find the balance between the two, where the
levels are challenging but still solvable. Here we present an
algorithm that automates the generation of Sokoban puzzles
of a given difficulty.

Sokoban is a puzzle game played on a rectangular grid. The
goal is for the player’s avatar to push boxes onto marked
goal squares. The challenge comes from the placement of the
walls, goals and boxes and the restriction that the avatar is
only strong enough to push one block at a time and cannot
pull blocks at all. The simplest way of explaining it is to
show a picture, for example Figure 1, which shows a level
with a single box and a single goal. This figure and the other
screenshots in this paper are from JSoko [4].

Culberson [3] has shown that Sokoban is PSPACE-complete,
meaning that it is in a sense at least as difficult as almost
any one-player game. (Most games that are hard in this
sense are for two or more players.) This, together with its
simple rules, makes Sokoban a challenging candidate for pro-
cedural generation of puzzle instances. Completely random

Sokoban levels are extremely likely to be unsolvable, or if
they are solvable, then they are likely to be very easy. Even
hand-made levels suffer from this problem unless the person
making the level is an experienced Sokoban level designer.

Most other research done on Sokoban has been geared to-
wards solving existing Sokoban puzzles (Junghanns and Scha-
effer [8], Botea, Müller, and Schaeffer [2]). Some work has
also been done on estimating the difficulty of a given Sokoban
problem (Jarušek and Pelánek [6], Ashlock and Schonfeld [1]).
Relatively little research has been done on generating new
Sokoban levels (Murase, Matsubara, and Hiraga [11], Masaru,
Tomoyumi, and Satoru [9]), although there are several ex-
isting generator programs (for example, those listed in [10]).
Additionally, there has been some research on generating
levels for other PSPACE-complete puzzle games (for exam-
ple, Servais [12]).

The remainder of this paper is divided into six sections. Sec-
tion 2 discusses what we want to achieve in more detail. Sec-
tion 3 describes our algorithm at a high level in pseudocode.
Section 4 discusses how our Sokoban generator constructs
level sets. Section 5 gives some experimental data on the
expected running time of our Sokoban generation algorithm.
Section 6 contains the conclusion and some open problems.

The interested reader is invited to visit our Sokoban Gen-
erator webpage [14] (see Figure 2) for supplementary infor-
mation. This includes some more detailed instructions for
the novice on how to play Sokoban, several hundred procedu-
rally generated Sokoban levels, a link to an open source Java
implementation called JSoko on which to play-test those lev-
els, a short video showing JSoko’s solution to some of our
levels, some larger color images from this paper, and the
archived data that we used to generate the tables and fig-
ures in Section 5.

2. OBJECTIVES
Any procedural generation system should satisfy several cri-
teria (from Doran and Parberry [5]): novelty, structure, in-
terest, controllability and speed. All of these are highly sub-
jective, but they are good guidelines on what a procedural
generation system should accomplish. Novelty refers to the
system’s ability to generate substantially different content
with each run. Structure means that the system is not just
generating random noise. Interest is a hard-to-define combi-
nation of novelty and structure and is the most subjective of
the criteria. Controllability means that the designers using

Figure 1: Solving a simple Sokoban level. The aim is to push the box to the square marked with the “X”
at top left using the yellow bulldozer. The white arrows indicate player actions. The six images show, from
left to right, (1) the start configuration, (2) push the box one place right, (3) reposition the player below the
box, (4) push the box two places up, (5) reposition the player to the right of the box, and (6) push the box
two places to the left into the final configuration.

Figure 2: The Sokoban Generator webpage [14] as-
sociated with this paper.

the system have some way to make it create outputs within
given design parameters. Speed is meant in the subjective
sense: The system needs to be “fast enough”, but what that
means depends on how it is being used.

Our system focusses mainly on interest. As interest depends
on novelty and structure, those criteria are also important.
The system is somewhat controllable, but given how specific
it is, there is not much room for design limitations, and it is
meant to run completely autonomously. Finally, the system
can be quite slow on moderately sized levels, but is fast
enough for a puzzle-a-day style game, or for generating level
sets offline.

Our primary aim is to generate reasonably difficult, but not
impossible, Sokoban levels. There are two reasons for this.
First, these levels are the kind that are hard for a human
to make, at least without a lot of experience. Second, we
feel that in puzzle games, difficulty is related to interest. Of
course, any game that is too difficult will become uninter-
esting, but making easy levels is a much simpler problem.

3. METHOD
The idea of working backwards from the goal towards the
start is not new (see, for example, Takes [13]), but previously

it has only been used to solve existing levels. Here we use
that idea to generate new levels. Our algorithm consists
of three high-level steps, each of which will be described in
more detail in its own subsection below.

1. Build an empty room.
2. Place goals in the room.
3. Find the state farthest from the goal state.

3.1 Empty Rooms
To build an empty room, we use a method somewhat similar
to that of Murase, Matsubara, and Hiraga [11]. We begin
by choosing a width and height for the level. This is done
by simply picking a random number within a user-specified
range. The level is then partitioned into a grid of 3 × 3
blocks. Each block is then filled in using a randomly chosen
and randomly rotated or flipped template. The templates
consist of a 3×3 pattern of walls and floors surrounded by a
border of blanks, walls and floors (see Figure 3). The borders
cause neighboring templates to overlap. A non-blank tile
must match any pattern it overlaps, whether it is placed
before or afterwards.

This overlap helps to create interesting levels by preventing
some bad configurations from being generated. For exam-
ple, the pattern consisting of a single wall in the middle
surrounded by a ring of floor will become a large dead-end
unless there are at least two floor tiles adjacent to each other
and that pattern. Since the templates are randomly rotated
and flipped before being placed, this is very easy to enforce
by simply placing two adjacent floor tiles in the border of
that template and leaving the rest blank.

If the generator places blocks in such a way that it cannot
fill in one of the cells with any of the available templates, it
will discard that attempt and start over. The run time of
this step is very small compared to the rest of the algorithm,
so even throwing away several partial room shapes does not
create any noticeable loss of speed.

Finally, there are some post-processing checks to make sure
the level will work well with the remaining steps. Any level
that fails one or more of these tests is discarded.

Figure 3: Templates used to design an empty room.

• The level is checked for connectivity. There should be
one contiguous section of floor. There is one special
case here. The templates that allow the player to pass
through, but will not allow a box to pass, are checked
as if there was a wall tile separating the two sides.
This only affects this check, and that tile is counted as
a floor tile in all other cases.

• Any level that has a 4× 3 or 3× 4 (or larger) section
of open floor is discarded. By observation, such levels
tend to make levels with very bushy, but not very deep
state spaces. This makes it very hard to generate the
level, but not much harder to solve it.

• The level must have enough floor space for the planned
number of boxes, plus the player and at least one
empty space.

• If the level contains any floor tiles surrounded on three
sides by walls, it is discarded. This is a somewhat aes-
thetic choice, but such tiles are either obviously dead
space if there is no goal there, or an easy place to get
boxes out of the way otherwise, so we think it improves
the quality of the resulting levels somewhat.

3.2 Placing Goals
Goal placing is done by brute force, trying every possible
combination of goal positions. This is admittedly very inef-
ficient. Many human made levels place the goals in certain
patterns, such as a rectangle of contiguous goals, but by do-
ing a brute force search for the best places to put the goals,
some obvious patterns emerge.

One pattern that seems to hold for most, but not quite all,
of the levels generated so far is that the goals are touching
either a wall or another goal. Whether forcing this would
provide a significant speed-up, or a significant drop in the
quality of the resulting levels has not yet been investigated.

Our generator uses a timer that checks it has exceeded its
allotted time. If it has, it will terminate and return the best
result so far. To help ensure that that result is something
interesting, even if not the best, the positions for the goal
crates are checked in random order. This is done by creating
a shuffled list of the empty spaces on the board.

3.3 Farthest State
For each placement of the goals the system finds the farthest
state from that goal state, that is, the state with the longest
shortest path from itself back to the goal. Over all goal
states, the farthest farthest state is returned as the output
of the generator. Thus, the distance from the goal state to
the start state is the metric by which we judge the resulting
levels, as well as influencing the algorithm used to search the
state space. The definition of distance is crucial. In Sokoban
there are four common distance metrics. The simplest is just
the move count, incremented every time the avatar moves.
As a measure of the difference between states, this does not
work very well. Just making a large labyrinth with only one
obvious solution will still give a high distance, but will be
fairly trivial in the end.

The number of box pushes, incremented each time the avatar
moves into a square containing a box, is not much different
than the move count. A level that required the player to
push boxes down long hallways would give a high score, but
again would not be difficult, just tedious.

The box lines metric is more interesting. It counts how many
times the player pushes a box, but any number of pushes of
the same box in the same direction only count as a single
box line. From our observations, the number of box lines
corresponds fairly well with the difficulty of the resulting
level. We are currently using the box line metric in our
generator.

The last metric is box changes. It counts how many times
the player stopped pushing one box, in any direction, and
began pushing another. This may be an even better mea-
sure of difficulty, and may improve the overall speed of the
generator, but it is more difficult to implement.

Any metric except for the move count allows us to abstract
out the avatar position. Instead of keeping up with which
square the avatar is in, we keep up with which group of con-
tiguous floor squares it could reach. This abstraction pro-
vides a significant decrease in the time it takes to generate
the set of further states.

All of this is done in reverse compared to how Sokoban is
played. The reason for this is to prevent the generator from
having to consider invalid moves. Any state reachable when
moving in reverse will be solvable when played normally.

Unfortunately, none of the usual search algorithms are suit-
able for this problem. The most obvious way to find the far-

thest state is to use a breadth-first search, returning the last
state found, but since moves in Sokoban are not reversible,
the only way to prevent repetitions is to store a list of all
visited nodes. For Sokoban, or any other PSPACE-complete
problem, this will quickly fill up the available memory. Iter-
ative deepening is unsuitable for similar reasons. Informed
searches, like A* or IDA*, are unsuitable because the target
is very vaguely defined, meaning we have no clear indication
when to stop the search. To get around these problems, we
use a form of iterative deepening twice, trading off the high
memory requirements for a somewhat slower algorithm.

proc Go(goal) ≡
startSet := MakeStartSet(goal);
resultSet := startSet;
depth := 1;
do

prevSet := resultSet;
resultSet := Try(startSet, resultSet, depth);
if resultSet = ∅ then exit fi;
depth := depth + 1;

od;
Go := (prevSet, depth).

proc Try(startSet, prevResults, depth) ≡
resultSet := Expand(prevResults);
tempSet := startSet;
for i := 1 to depth do

resultSet := resultSet− tempSet;
tempSet := Expand(tempSet);

od;
Try := resultSet.

MakeStartSet takes the goal state and places the player into
each available contiguous floor area. Expand takes a set of
states and returns the set of states one step farther. What
those states are depends on which metric is being used,
which is why the choice of metric has such an impact on
the running time. Go is almost a standard iterative deep-
ening algorithm. It takes the goal, calls MakeStartSet to set
things up and then calls Try one depth at a time. What is
different here is the end condition. Go calls Try until it fails
and then returns the previous set of results. Try takes the
starting set, the previous results and a target depth. It then
calls Expand on the previous results. Then it starts over
expanding the start set, subtracting that from the results.
What is left after the target depth has been reached is all of
the nodes that can be reached in depth steps, but no sooner.
If depth is too great, this will be an empty set.

4. GENERATING LEVEL SETS
Our generator returns the set of all levels that are as far from
the goal state as possible. This can be anywhere from one
to a few hundred levels, and some are obviously better than
others. We have an additional layer over the generator that
attempts to select a good level from those generated and
then collects the results of several runs into a level set. Ad-
ditionally, it makes an attempt to reject levels that are much
too easy, or are too similar to levels already in the level set.

Finally, when the target number of levels has been reached,
it attempts to sort them by some measure of difficulty.

The questions of what is better and what is not good enough
both rely on the same, rather arbitrary, measure. We take
the candidate level and give it a score based on a num-
ber of factors. To begin with, the score is 100 · (pushes −
number of sibling levels+4·lines−12·boxes)+Random(0, 300),
where pushes is the number of box pushes in the solution,
sibling levels is the number of other levels the generator
found at the same depth, lines is the number of box lines
in the solution, boxes is the number of boxes in the level
and Random is just a random number between the given
values. While this is, again, fairly arbitrary, the rationale is
that both more pushes and more lines make the level more
difficult, while levels with many sibling levels seem to be
less interesting, just by observation. The number of boxes
is subtracted not because more boxes makes the level less
interesting, but because the number of lines needs to exceed
the number of boxes by a certain factor for the level to have
a better chance of being a good level. The random factor is
mainly there to break ties.

Some other checks are made after getting the base score.
Any trapped box is worth -100000 points, which is almost
guaranteed to get the level rejected. Any box touching a wall
is worth -150 points, a box touching the player is worth 50
points, and a box touching another box is worth 30 points.
Finally, a goal area touching a goal area is worth 30 points.
These constants can be adjusted by the individual designer
to suit his or her intuition about features possessed by good
Sokoban levels. Any level with a final score of 0 or less is
rejected. The base score is quite a bit higher than the scores
for most of the various other checks though, so not many
levels are rejected at this point. This same score is then used
to choose the best level from those generated, assuming any
are left.

Once a level has passed all of the other tests, the program
checks to see whether or not it is too similar to another level
already in the set. Currently, this just removes the player
and checks for exact matches for all of its rotations and
reflections. This still generates a few levels that a human
would consider too similar, so there is still more work to be
done here.

Assuming no other level is too similar, the level is added
to the set. When the set gets to target size, it is sorted by
difficulty and written to a file. The measure of difficulty we
currently use is lines·log lines+log time−lines/pushes. This is
based on our observations that the number of box lines is the
most important factor. time is the time taken to generate
that level, in seconds, and is mainly used as a tie breaker.
The lines/pushes factor is small correction that favors levels
with shorter box lines rather than long corridors.

5. EXPERIMENTAL RESULTS
We have implemented and tested our new algorithm for the
automatic generation of Sokoban levels. Figure 9 contains
some screenshots of sample levels generated. The reader is
invited to visit our Sokoban Generator webpage [14], where
he or she can download some of our level sets and try them
out.

Size Moves Time

1× 2 26 < 1 sec
2× 2 48 1.9 sec
2× 3 60 16 sec
3× 3 73 128 sec

Table 1: The average experimental running time for
the generation of 2-box puzzles of various sizes, with
the corresponding average number of moves needed
to solve them. The averages were computed over 10
random samples each. The number of moves were
calculated from the generated data by JSoko.

Our algorithm is certainly suitable for offline use in a level-a-
day style game. In practice it can generate several levels over
the course of a day depending on how much CPU power it is
given and how large the desired levels are. The theoretical
run time for the generation of one level is roughly

b

(
s

b

)2

,

where b is the number of boxes and s is the number of empty
spaces. This is feasible for a fairly small number of boxes
that might occur in practice. We have been able to generate
levels with 4 boxes within a 2× 3 level outline within a few
hours.

We ran experiments measuring the average run-time gener-
ating 10 random puzzles of each size 1 × 2, 2 × 2, 2 × 3,
and 3 × 3. See Figure 4 for an indication of the relative
sizes of these levels. All of these results are from runs on an
Intel i7 3.2 GHz quad-core processor with hyperthreading.
Our system is not written to make use of the extra cores,
but we run several independent copies of the code simulta-
neously, relying on the operating system to place each copy
on a separate processor core.

Tables 1 and 2 show in Column 3 the experimental run-
ning time required to generate 2-box and 3-box puzzles re-
spectively, averaged over 10 samples for each entry. These
data are depicted pictorially in Figure 5 with an exponential
trendline. Tables 1 and 2 also show in Column 2 the average
number of moves required to solve the generated puzzles us-
ing the autosolver in JSoko, set to “move optimal with best
pushes”. These data are depicted pictorially in Figure 8 with
a quadratic trend line.

Table 3 shows in Column 3 the average experimental running
time for 2 × 2 puzzles (which have 36 cells). See the level
at top right of Figure 4 to get some idea of the size of the
puzzle. These data are depicted pictorially in Figure 7 with
an exponential trendline. Table 3 also shows in Column 2
the average number of moves required to solve the generated
puzzles using the autosolver in JSoko, set to “move optimal
with best pushes”. These data are depicted pictorially in
Figure 6 with a quadratic trend line.

Levels with a single box are generally uninteresting. Levels
with 2 boxes can be generated very quickly, usually within
a few seconds, but tend to be very easy. At 3 boxes the
levels start to get slightly more interesting, and can still be

Figure 4: Examples showing the relative sizes of
1× 2, 2× 2, 2× 3, and 3× 3 Sokoban levels. Note
that, for example, a 2× 2 grid such as the one in the
top-right corner has 4 subgrids (outlined in black)
of 9 cells each (outlined in gray).

Size Moves Time

1× 2 38 58 sec
2× 2 69 2.7 min
2× 3 98 1.1 hr
3× 3 115 24.5 hr

Table 2: The average experimental running time for
the generation of 3-box puzzles of various sizes, with
the corresponding average number of moves needed
to solve them. The averages were computed over 10
random samples each. The number of moves were
calculated from the generated data by JSoko.

Boxes Moves Time

2 48 1.9 sec
3 69 2.7 min
4 100 3.4 hr
5 109 26 hr

Table 3: The average experimental running time for
the generation of 2× 2 puzzles, with the correspond-
ing average number of moves needed to solve them.
The averages were computed over 10 random sam-
ples each. The number of moves were calculated
from the generated data by JSoko.

Figure 5: The average experimental running time
in seconds for the generation of puzzles with 2 and
3 boxes versus puzzle area. The corresponding grid
sizes are at the top. Note that the vertical axis has a
logarithmic scale. The line is a best-fit exponential.

Figure 6: The average experimental number of
moves needed to solve 2 and 3-box puzzles versus
puzzle area. The corresponding grid sizes are at the
top. The line is a best-fit quadratic.

Figure 7: The average experimental running time in
seconds versus number of boxes for the generation
of 2× 2 puzzles. Note that the vertical axis has a
logarithmic scale. The line is a best-fit exponential.

Figure 8: The average experimental number of
moves versus number of boxes for the generation
of 2× 2 puzzles. The line is a best-fit quadratic.

generated within a few minutes. Levels with 4 or more boxes
can be very interesting, and difficult, but take substantially
more time to generate. Using the timer feature, we can force
the generator to return the best result after a given time
period. Using a time limit of 4 hours, we have generated
levels with 5 and 6 boxes that appear interesting and difficult
(for example Figure 9 includes some 5-box puzzles).

Using just iterative deepening, the algorithm runs several
times faster, but uses much more memory. On some levels,
the program crashed after consuming over 1.5GB of memory.
Using our algorithm, the same levels never exceeded 40MB
of memory.

6. CONCLUSION AND FUTURE WORK
While we found the puzzles that we generated “interesting”,
we provide no justification for this claim in this paper, al-
though we do invite the reader to try for themselves by visit-
ing our Sokoban Generator webpage [14]. We plan to gather
data from play-testing in the next phase of this research, and
we will report the results in a later paper. Some research
into what makes a level interesting and what makes it diffi-
cult is needed, though some research on these questions has
already been done (for example, Ashlock and Schonfeld [1],
Jarušek and Pelánek [7]).

There are several parts of our program than need additional
research. The location of the goals within the level is cur-
rently done with a brute force search, simply trying every
combination of locations. Some method of discarding cer-
tain combinations would significantly cut down on the run
time. A first step would be to investigate whether placing
goals along walls would be a good trade between speed and
missed possibilities.

The algorithm we use for generating the level once the goals
are placed trades off speed for a much lower memory re-
quirement. As low as the memory requirements have be-
come, there is some room to trade some back, though it is
not obvious where to make such trades.

Whether box lines or box changes is better correlated to dif-
ficulty is an open question, though the answer is probably

Figure 9: Some levels of varying difficulty created by our generator.

somewhat subjective. Using the states one box change far-
ther away may be faster overall than using those one box
line away. They would be slower to generator at each step,
but there would usually be much fewer steps. Whether this
results in a significant improvement needs to be tested.

Currently, our system can only handle a maximum of about
6 boxes. Increasing this number would require some means
of breaking the level down into subsections, but solving in-
dividual puzzles is not as interesting as solving one well-
integrated puzzle, so doing this in a non-obvious way is a
challenge.

Finally, this research could conceivably be extended the pro-
cedural generation of levels for many different puzzle games.
Reducing the amount of game-specific information needed
by the generator will take some effort.

7. REFERENCES
[1] D. Ashlock and J. Schonfeld. Evolution for automatic

assessment of the difficulty of Sokoban boards. In
Proceedings of the IEEE Congress on Evolutionary
Computation, pages 1–8, 2010.

[2] A. Botea, M. Müller, and J. Schaeffer. Using
abstraction for planning in Sokoban. In J. Schaeffer,
M. Müller, and Y. Björnsson, editors, Computers and
Games, volume 2883 of Lecture Notes in Computer
Science, pages 360–375. Springer, 2003.

[3] J. Culberson. Sokoban is PSPACE-complete. In
Proceedings of the International Conference on Fun
with Algorithms, pages 65–76, 1998.

[4] B. Damgaard, H. Marxen, and M. Meger. JSoko.
http://sourceforge.net/projects/jsokoapplet/.

[5] J. Doran and I. Parberry. Controlled procedural

terrain generation using software agents. IEEE
Transactions on Computational Intelligence and AI in
Games, 2(2):111–119, 2010.

[6] P. Jarušek and R. Pelánek. Difficulty rating of
Sokoban puzzle. In Proceedings of the Fifth Starting
AI Researchers’ Symposium, 2010.

[7] P. Jarušek and R. Pelánek. Human problem solving:
Sokoban case study. Technical Report
FIMU–RS–2010–01, Faculty of Informatics, Masaryk
University Brno, 2010.

[8] A. Junghanns and J. Schaeffer. Sokoban: A
challenging single-agent search problem. In
Proceedings of the IJCAI Workshop on Using Games
as an Experimental Testbed for AI Research, pages
27–36, 1997.

[9] O. Masaru, K. Tomoyumi, and K. Satoru. A method
of automatic creation of goal-area in Sokoban maps.
Joho Shori Gakkai Shinpojiumu Ronbunshu, pages
67–74, 2003.

[10] M. Mühendisi. Sokoban Level Generators (A to Z).
http://www.erimsever.com/sokoban7.htm.

[11] Y. Murase, H. Matsubara, and Y. Hiraga. Automatic
making of Sokoban problems. In N. Foo and
R. Goebel, editors, PRICAI’96: Topics in Artificial
Intelligence, volume 1114 of Lecture Notes in
Computer Science, pages 592–600. Springer, 1996.

[12] F. Servais. Finding Hard Initial Configurations of
Rush Hour with Binary Decision Diagrams. M.Sc.
Thesis, Université libre de Bruxelles, Faculté des
Sciences. 2005.

[13] F. Takes. Sokoban: Reversed Solving. Bachelor’s
Thesis, Leiden University. 2007.

[14] J. Taylor and I. Parberry. Sokoban Generator.
http://www.eng.unt.edu/ian/research/sokoban/.

	LARC-2011-01 cover
	SokobanPaper

