
On the Computational Complexity of Optimal Sorting Network

Verification

Ian Parberry∗

Department of Computer Science
The Pennsylvania State University

Abstract

A sorting network is a combinational circuit for sorting, constructed from comparison-swap units.
The depth of such a circuit is a measure of its running time. It is reasonable to hypothesize that only
the fastest (that is, the shallowest) networks are likely to be fabricated. It is shown that the problem
of verifying that a given sorting network actually sorts is Co-NP complete even for sorting networks of
depth only 4�logn� + O(1) greater than optimal. This is shallower than previous depth bounds by a
factor of two.

1 Introduction

A comparator network is a combinational circuit constructed from comparison-swap units called compara-
tors. A sorting network is a comparator network which sorts. The size of a comparator network is the
number of comparators used. The depth is the number of layers of comparators, where each layer receives
input only from the layers above it. Comparator networks can be fabricated relatively easily using VLSI
techniques. It would be useful to be able to verify whether a given sorting network actually works. It is
well known that in order to test whether a given n-input comparator network is a sorting network, it is
sufficient to check that it sorts the 2n − n − 1 nonsorted zero-one inputs (which we will call bit-strings).
This observation is called the zero-one principle.

Comparator networks which sort all but a single nonsorted bit-string are known. That is, for all
nonsorted sequences of n bits x, there exists an n-input comparator network which sorts all bit-strings
except x. These are called single exception sorting networks. Chung and Ravikumar [5] give a recursive
construction of an n-input single exception sorting network of polynomial size and depth. They further
deduce in [6] that the sorting network verification problem is Co-NP complete. Parberry [16] gave a non-
recursive construction for a single exception sorting network of depth D(n− 1) + 2�log(n− 1)�+ 2, where
D(n) is the minimum depth of an n-input sorting network, and deduced, using the construction of Chung
and Ravikumar [6], that the problem of verifying sorting networks of depth 2D(n) + 6�log n� + O(1) is
Co-NP complete. We will show that the sorting network verification problem remains Co-NP complete
even for sorting networks of depth D(n) + 4�log n� + O(1).

The remainder of this paper is divided into six sections. The first section contains a more formal
definition of a sorting network, and briefly describes some standard results. The second section contains a
proof that a modified version of the satisfiability problem is NP complete. The third section contains a
sketch of the reduction from that problem to the sorting network verification problem. The fourth section
contains the details of the construction of an important component used in that reduction — a comparator
network that sorts all except a specific set of inputs. The construction of this component uses the single
exception sorting network of Parberry [16]. A slightly improved single exception sorting network is given
in the fifth section of this paper. The sixth section contains details on how to reduce the depth of the
construction to give the required result.

Let N denote the natural numbers, and B denote the Boolean set {0, 1}. Members of Bn (the set of
n-tuples of bits) will be called bit-strings. We will use the standard regular-expression notation to describe

∗Research supported by NSF Grant CCR-8801659. Author’s current address: Department of Computer Sciences, P.O. Box
13886, University of North Texas, Denton, TX. 76203-3886, U.S.A. Electronic mail: ian@dept.csci.unt.edu.

1

Figure 1: A 4-input sorting network of depth 3 and size 5.

certain sets of bit-strings, for example, 0n1m denotes a single bit-string consisting of n ones followed by m
zeros, and (00 ∪ 11)n denotes the set of n pairs of bits, where each pair is either 00 or 11, that is,

{x1y1 · · · xnyn | xi = yi ∈ B for 1 ≤ i ≤ n}.

If A and B are sets, A\B denotes {x | x ∈ A, but x �∈ B}.

2 Sorting Networks

One of the early investigations into parallel sorting concerned the Bose-Nelson sorting problem, named by
Floyd and Knuth [9], after Bose and Nelson [4]. The problem involves sorting n values by using a sequence
of oblivious in-situ comparison-and-swap operations; that is, a sequence of comparisons between the ith
and jth value, where i and j are independent of the values being sorted. The obliviousness property allows
the following elegant hardware interpretation of the problem. Suppose that we are given a basic unit of
hardware called a comparator. A comparator takes two values as input and outputs them in ascending
order. A comparator network consists of n parallel channels, which can be thought of as wires carrying
values, to which comparators are attached. The network is divided into a finite number of levels. Each
level consists of one or more comparators. Each comparator is attached to two channels. At most one
comparator is placed on any channel at each level. Channels, in our diagrams, will be drawn as vertical
lines, and comparators as horizontal lines with heavy dots emphasizing the connection-points. Levels are
numbered vertically from top-to-bottom, and channels are numbered horizontally from left-to-right. Level
0 will be used to denote the inputs.

Let C be a comparator network. We define the value carried by channel i of C at level j on input
x = (x1, . . . , xn), written V (C, x, i, j), as follows. V (C, x, i, 0) = xi and for j > 0:

• If there is a comparator between channels i and k > i at level j, then

V (C, x, i, j) = min(V (C, x, i, j − 1), V (C, x, k, j − 1)).

• If there is a comparator between channels i and k < i at level j, then

V (C, x, i, j) = max(V (C, x, i, j − 1), V (C, x, k, j − 1)).

• Otherwise, V (C, x, i, j) = V (C, x, i, j − 1).

The output of an n-input, d-level comparator network C on input x is

V (C, x) = (V (C, x, 1, d), V (C, x, 2, d), . . . , V (C, x, n, d)).

If for all inputs x, V (C, x) is in nondecreasing order from left to right, then C is called a sorting network.
For example, Figure 1 shows a 4-input sorting network. The comparators on the first level compare

the values in pairs. The second layer of comparators determines the maximum and minimum values: the
minimum of the two minima is the minimum overall, and the maximum of the two maxima is the maximum
overall. The third layer puts the remaining two values into the correct order.

Each level of a comparator network consists of a set of independent comparisons which may be performed
in parallel. The number of levels is thus a reasonable measure of parallel time. This is called the depth
of the network. Another resource of interest is its size, which is defined to be the number of comparators
used. We will call an n-input sorting network optimal if it is P-uniform (that is, there is an algorithm
which outputs a description of the sorting network, on input n, in time polynomial in n), and has depth
O(log n). Optimal sorting networks have size O(n log n).

There have been a number of recent results on optimal sorting networks. For a survey of some of these
results, see Parberry [13, 14]. Sorting networks of optimal depth are known for n ≤ 10 (Parberry [15])
and with optimal size for n ≤ 8 (Knuth [11]). For all practical purposes, the best sorting networks are
constructed using the recursive technique of Batcher [3], which gives depth O(log2 n) and size O(n log2 n),
although some small improvement in the lower-order terms of the size have been made by Drysdale [7]
and Van Voorhis [19] in exchange for a large increase in depth. Ajtai, Komlós and Szemerédi [1, 2] have
demonstrated that asymptotically optimal (logarithmic depth and log-linear size) sorting networks can be
constructed; however their method remains impractical for reasonable values of n despite the efforts of
Paterson [17], since the constant multiples involved are extremely large.

We will make use of two standard results. Firstly, if we allow channels to be permuted obliviously
between each layer, then the model is the same, in the sense that we can remove the permutations in
polynomial time in a manner that affects neither the size of the network, the depth of the network, nor
its ability to sort. This result is due to Floyd and Knuth [8]. Therefore, the sorting network verification
problems with and without permutations allowed are polynomial-time equivalent. The inclusion of such
permutations will simplify the presentation of our results since it will allow us to physically group together
logically related channels. The second standard result is the zero-one principle, which states that a com-
parator network is a sorting network iff it sorts all bit-strings. In the light of this result, we will throughout
this paper consider only zero-one inputs. These results are discussed at great length in Knuth [11], and
Parberry [13, 16, 14]. We assume that the reader is familiar with the techniques and terminology of the
theory of NP completeness. The reader who is not should consult a standard reference, such as Garey
and Johnson [10].

More formally, the sorting network verification problem can be stated as a decision problem as follows:

Sorting Network Verification (NONSORT)
Instance: A comparator network C.
Question: Is there an input which C does not sort?

The number of comparators in C is a reasonable measure of input size for any sorting network verification
program. Furthermore, the number of inputs to C is a valid measure of input size for any program which
verifies optimal sorting networks. Clearly NONSORT ∈ NP , since if we are given a comparator network C
and an input x, the output of C on x can be determined in time polynomial in the number of comparators
in C. It remains to show that NONSORT is NP hard. This will imply that the original sorting network
verification problem is Co-NP complete.

3 One-in-Three 3SAT

The following set-theoretic problem was shown to be NP complete by Schaefer [18].

One-in-Three 3SAT (T3SAT)
Instance: Sets S1, . . . , Sn with |Si| ≤ 3 for 1 ≤ i ≤ n.
Question: Does there exist a set S such that |S ∩ Si| = 1 for 1 ≤ i ≤ n?

Garey and Johnson [10] list Schaefer’s result in a slightly different form which more clearly illustrates that
it is a restricted case of the Satisfiability Problem. Define a clause over a set V to be a subset of V ×V ×V .
A set S ⊆ V is said to satisfy a clause (v1, v2, v3) iff |{i | vi ∈ S}| = 1. If C is a list of clauses over V ,
then S ⊆ V is said to be a satisfying assignment for C iff S satisfies all clauses in C. Intuitively, the
elements of V are variables, and S is a set of variables to be assigned the value true. A clause represents
a ternary Boolean function which is true iff exactly one of its inputs is true. A list of clauses represents
the conjunction of a list of these functions.

Modified One-in-Three 3SAT (M3SAT)
Instance: A list of clauses C over a set V .
Question: Is there a satisfying assignment for C?

Lemma 3.1 M3SAT is NP complete.

Proof: Obviously, M3SAT ∈ NP . It is easy to show that T3SAT ≤p
m M3SAT. �

We will find it useful to consider a restricted version of M3SAT.

Balanced One-in-Three 3SAT (B3SAT)
Instance: A set of variables V and a list of clauses C over V in which every variable appears
exactly three times.
Question: Is there a satisfying assignment for C?

Note that each instance of B3SAT with n clauses must have n variables. (Since there are n clauses, there
are 3n instances of variables. Since every variable has exactly 3 instances, there must be n variables.) Also,
every satisfiable instance of B3SAT with n clauses must have n divisible by 3. (Let V be a variable-set,
and C = (C1, . . . , Cn) be a list of clauses over V . Suppose S ⊆ V , where |S| = m. Then C contains 3m
instances of variables that are members of S. But if S is a satisfying assignment, since there are n clauses,
each of which must contain exactly one instance of a variable in S, there must be n instances of variables
that are members of S. Therefore n = 3m.)

Theorem 3.2 B3SAT is NP complete.

Proof: Clearly B3SAT ∈ NP . By Lemma 3.1, it suffices to show that M3SAT ≤p
m B3SAT.

Suppose C1, . . . , Cn is an instance of M3SAT over variable-set V . The corresponding instance of B3SAT
is constructed as follows. For every clause Ci, there are three new clauses (ai,1, ai,2, ai,3), (bi,1, bi,2, bi,3),
(ci,1, ci,2, ci,3) called structural enforcers. For each variable v ∈ V , let

Xv = {ai,j , bi,j, ci,j | v is the jth variable in Ci}.
Suppose

Xv = {ai1,j1, bi1,j1, ci1,j1, . . . , aim,jm, bim,jm, cim,jm}
for some m ≤ n. Define

Iv = {(aik ,jk
, bik ,jk

, cik ,jk
) | 1 ≤ k ≤ m}.

If k = 1, define Ev = Iv, otherwise define

Ev = {(bi1,j1, ci1,j1, ai2,j2), (bi2,j2, ci2,j2, ai3,j3),
. . . , (aim−1,jm−1, bim−1,jm−1 , cim,jm), (aim,jm, bim,jm, ai1,j1)}

For each (p, q, r) ∈ Iv and each (p, q, r) ∈ Ev there are three clauses (p, x, y), (q, x, y), and (r, x, y), called
equality enforcers, where x and y are new variables not previously used. It is clear that this transformation
can be computed in time polynomial in n.

The new instance of M3SAT consisting of the structural enforcers and the equality enforcers is actually
an instance of B3SAT, that is, that every variable appears in exactly three clauses. Each of the ai,j, bi,j,
and ci,j variables occurs in exactly one structural enforcer, and two equality enforcers (one corresponding
to an element of Iv, and one corresponding to an element of Ev, for some variable v). The extra variables
in the equality enforcers also appear in exactly three clauses, by construction.

We claim that C1, . . . , Cn is satisfiable iff there is a satisfying assignment for the structural enforcers
and the equality enforcers. Clearly if S is a satisfying assignment for C1, . . . , Cn, then ∪v∈SXv satisfies
every structural enforcer and every equality enforcer. Conversely, suppose that S satisfies the structural
enforcers and equality enforcers. Since the equality enforcers corresponding to members of Iv are satisfied
by S, then for all variables v ∈ V , either Xv ∩ S = {} or Xv ⊆ S. Thus if we set T = {v | Xv ⊆ S}, then
T satisfies C1, . . . , Cn. �

Figure 2: A variable component.

Figure 3: A clause component.

4 The Reduction

In order to show that NONSORT is NP complete, it is sufficient to show that B3SAT ≤p
m NONSORT.

Suppose we are given an instance of B3SAT, that is, a list of clauses C = (C1, . . . , Cn) over a set of
variables V = {v1, . . . , vn} such that every variable in V appears exactly three times in C. We will
construct a comparator network with 5n inputs. An input x = (x1, . . . , x5n) to the comparator network is
said to correspond to assignment S for C iff for all 1 ≤ i ≤ n, x ∈ (05 ∪ 15)n, and vi ∈ S iff x5i−4 = 1. Our
comparator network will sort only inputs that do not correspond to satisfying assignments for C, that is,
inputs that do not correspond to any assignment, and inputs that correspond to nonsatisfying assignments.
Therefore, it will be a sorting network iff C is not satisfiable.

For each variable v ∈ V , we have a variable component, consisting of five channels and six comparators,
of depth three (see Figure 2). For each clause Ci we have a clause component, consisting of three channels
and three comparators, of depth three (see Figure 3). These components are connected as follows.

The 5n inputs are divided into quintuples and put into n variable components, one for each variable. The
center three outputs of each variable component are put into the inputs of the appropriate clause compo-
nents. Specifically, suppose Ci = (vi,1, vi,2, vi,3), for 1 ≤ i ≤ n where vi,1, vi,2, vi,3 ∈ V . Let c(i, j) denote the
number of previous occurrences of vi,j in C1, . . . , Ci, that is, c(i, j) = |{vk,l | k < i or (k = i and l < j)}|+1,
for 1 ≤ i ≤ n, 1 ≤ j ≤ 3. Note that 0 ≤ c(i, j) ≤ 2. Then for each clause Ci = (vi,1, vi,2, vi,3), put the
(c(i, k) + 2)th output of the variable component corresponding to vi,k into the kth input of the clause
component corresponding to Ci, for 1 ≤ k ≤ 3. The first two outputs of the clause components are routed
to the far right, and the last output of the clause components is routed to the far left. All of the channels
are then put into a special component called a selector, which will sort every input except those which
correspond to satisfying assignments.

The centre three outputs of a variable component corresponding to variable v ∈ V are copies of variable
v which are to be used in the clauses in which v appears. It can be demonstrated (by case analysis of
the 32 different input strings) that if the first and last outputs of a variable component are zero, then all
outputs are zero, and if the first and last outputs of a variable component are one, then all outputs are
one. Thus the centre three outputs of a variable component carry a valid truth assignment for the variable
v if the first and last output of the variable component are identical. The output of a clause component is
001 iff exactly one of its input channels carries a one (since each clause component is actually a three-input
sorting network).

Suppose the input to the comparator network corresponds to a satisfying assignment S. Since there is
exactly one variable from each clause in S, the first n inputs to the selector will be one, and the last 2n
inputs to the selector will be zero. The remaining 2n inputs will consist of n pairs, each of which is either

. . .

. . .

. . .

-selector(X,y)

Exception-

sorting network

y

Figure 4: An exception-X sorting network.

00 or 11. Since variable appears in exactly three clauses, S must contain n/3 variables. Therefore 2n/3
pairs will be 00, and n/3 pairs will be 11. That is, the input to the selector will be a member of the set
1n(B2n

2n/3 ∩ (00 ∪ 11)n)02n, where Bn
k = {x ∈ Bn | x has exactly k ones}. Conversely, if the input to the

comparator network does not correspond to satisfying assignment, then it is clear that the input to the
selector will not be of this form. The above reduction can be carried out in time polynomial in n provided
there exist P-uniform selectors. The construction of the selector is the subject of the next section.

5 Selective Sorting Networks

The selector used in the previous section was a comparator network which selectively sorts all bit-strings
except for members of a certain, slightly obscure set. We use the generic term selective sorting network
for such a comparator network. If the comparator network sorts all members of Bn\X, than it is called
an exception-X sorting network.

Comparator networks which sort all but a single bit-string are known. That is, for all nonsorted x ∈ Bn,
there exists an n-input comparator network which sorts all members of Bn except x. These are called single
exception sorting networks. Chung and Ravikumar [5] give a recursive construction of an n-input single
exception sorting network of polynomial size and depth. Parberry [16] gives a non-recursive construction
for a single exception sorting network of depth D(n − 1) + 2�log(n − 1)� + 2, where D(n) is the minimum
depth of an optimal n-input sorting network. We wish to find a particular selective sorting network with
5n inputs, where n is a multiple of three, and an exception set of size(

n
n/3

)
.

If X ⊆ Bn, and y ∈ Bn is nonsorted, a comparator network C is an (X, y)-selector iff for all x ∈ Bn,
the output of C on input x is y iff x ∈ X.

Theorem 5.1 If X ⊆ Bn, and there exists an (X, y)-selector of depth DX(n), then there exists an
exception-X sorting network of depth DX(n) + D(n) + 2�log n� + 2.

Proof: Suppose X ⊆ Bn, and there exists a comparator network C of depth DX(n) and nonsorted
y ∈ Bn such that for all x ∈ Bn, the output of C on input x is y iff x ∈ X. Then an exception-X sorting
network is constructed by composing C and an exception-y sorting network as in Figure 4. The total depth
is bounded above by the depth of C plus the depth of the exception-y sorting network. Parberry [16] gives
a construction for exception-y sorting networks for all nonsorted y of depth D(n) + 2�log n� + 2. �

The exception-set from the previous section is the set of bit-strings of the following form: n ones,
followed by n pairs of bits, 2n/3 of which are 00 and n/3 of which are 11, followed by 2n zeros. That is,

X = 1n(B2n
2n/3 ∩ (00 ∪ 11)n)02n.

Pair sorter

n 2n 2n

4n/3 2n/3

Figure 5: An X-selector.

Pair sorter

d e f g

a b c

Figure 6: An X-selector labelled for the proof of Theorem 5.2.

Theorem 5.2 Suppose n ∈ N, and X = 1n(B2n
2n/3 ∩ (00 ∪ 11)n)02n. There exists an exception-X sorting

network of depth D(n) + D(5n) + 2�log(5n)� + 3.

Proof: Let X = 1n(B2n
2n/3 ∩ (00 ∪ 11)n)02n ⊆ B5n

5n/3. By Theorem 5.1, we can build an exception-X
sorting network from an (X, y)-selector. An (X, y)-selector with y = 1n04n/312n/302n can be constructed
as in Figure 5, by leaving the first n and the last 2n channels alone, and placing a 2n-input pair sorter on
the remaining 2n channels. A pair sorter is a comparator network which has an even number of inputs.
The inputs are treated as bit-pairs. Each bit-pair is sorted, and the sorted bit-pairs are then sorted into
lexicographic order, that is, the output of the pair sorter is a member of (00)∗(01)∗(11)∗. We will return
to the construction of the pair sorter later in this proof.

Suppose the input to the network shown in Figure 5 is abc ∈ B5n
5n/3, where a ∈ Bn, b, c ∈ B2n, and its

output is defg ∈ B5n
5n/3, where d ∈ Bn, e ∈ B4n/3, f ∈ B2n/3, and g ∈ B2n (see Figure 6). We claim that

defg = 1n04n/312n/302n iff abc ∈ X. Suppose abc ∈ X. then b ∈ B2n
2n/3 ∩ (00 ∪ 11)n. Since b ∈ (00 ∪ 11)n,

the output of the pair sorter, ef , is a sorted sequence of bits. Since b ∈ B3n
2n/3, ef = 04n/312n/3. Therefore,

since d = a and g = c, defg = 1n04n/312n/302n, as claimed. Conversely, suppose that abc �∈ X. We
claim that defg �= 1n04n/312n/302n, that is, either d �= 1n, e �= 04n/3, f �= 12n/3, or g �= 02n. Since
abc �∈ X, either a �= 1n, (in which case there is a zero in d), c �= 02n, (in which case there is a one in g), or
b �∈ B2n

2n/3 ∩ (00∪ 11)n. In the latter case, suppose b ∈ B2n
m . If m = 2n/3, then b �∈ (00∪ 11)n, and so there

is a one in e. If m < 2n/3, then there is a zero in f . If m > 2n/3, then there is a one in e. In all cases,
defg �= 1n04n/312n/302n, as claimed.

It is clear that the depth of our 5n-input (X, y)-selector is equal to the depth of a 2n-input pair sorter.

Figure 7: A pair comparator.

Figure 8: A 4-pair sorter constructed from Figure 1.

This pair-sorter is constructed as follows. The pairs are sorted with a single layer of comparators, one
per pair. A pair of pairs can be sorted into lexicographic order by comparing the first element of the first
pair with the first element of the second pair, and simultaneously comparing the second element of the
first pair with the second element of the second pair (see Figure 7). Therefore n pairs can be sorted into
lexicographic using a comparator network obtained from an n-input sorting network by doubling all the
channels, and replacing every comparator with a pair-comparator (for example, see Figure 8). Thus the
depth of the pair sorter is D(n) + 1. Therefore by Theorem 5.1, the depth of our 15n-input exception-X
sorting network is D(n) + D(5n) + 2�log(5n)� + 3. �

Theorem 5.3 NONSORT is NP complete even for n-input sorting networks of depth 2D(n)+2�log n�+9.

Proof: The reduction is as described in Section 4, using the selector from Theorem 5.2. The depth of
an n-input comparator network constructed using this technique is bounded above by 3 for the variable
components, plus 3 for the clause components, plus 2D(n) + 2�log n� + 3 for the selector, a total of
2D(n) + 2�log n� + 9. �

6 Improved Single Exception Sorting Networks

In the construction of the selector in the previous section, we used the single exception sorting network
from Parberry [16], which has depth D(n − 1) + 2�log(n − 1)� + 2. It is possible to improve that result
by a small constant. Suppose n ∈ N, and 1 ≤ k < n. A better single exception sorting network with
exception 1k0n−k is constructed as follows (see Figure 9). In [16], a single exception sorting network with
this exception is called a canonical k-ones single exception sorting network. The first k inputs are put into
a min network. The leftmost output of this network is the minimum of its inputs. The last k − 1 outputs
of this network, and the remaining n − k channels are sorted together. The leftmost channel, and the
leftmost n − k − 1 outputs of the sorting network are put into an insertion network. This network takes

Sort

Insert

Min

k

k

n-k

n-k

Figure 9: A single exception sorting network.

as input a single value followed by a sorted sequence, and it inserts the new value into the correct place in
the sequence. It is straightforward to recursively construct n-input min and insertion networks of depth
�log n�.

It is easy to see that this construction gives a single exception sorting network. Suppose the input to
the network is 1k0n−k. Then the leftmost output of the min network is 1, and the output of the sorting
network is 0n−k1k−1, and hence the output of the insertion network is 0n−k−1101k−1, which is not sorted.
Now suppose the input to the network is not 1k0n−k. In particular, suppose it is ab �= 1k0n−k, where
a ∈ Bk, b ∈ Bn−k. Then either a �= 1k or b �= 0n−k. In the former case, the leftmost output of the min
network is 0, hence the values on the channels immediately after the sorting network are sorted, and they
remain sorted through the rest of the network. If a = 1k and b �= 0n−k, then b contains at least one 1, and
so the insertion network carries the 1 from the leftmost channel into the correct place.

Theorem 6.1 For all n > 1 and all nonsorted bit-strings x, there exists an n-input comparator network
of depth D(n − 1) + 2�log n� − 1. which sorts all bit-strings except x.

Proof: If D(n) is the depth of the optimal n-input sorting network, then the depth of the canonical
k-ones single exception sorting network shown in Figure 9 is

D(n − 1) + �log�n/2�� + �log	n/2
� ≤ D(n − 1) + 2�log n� − 1.

If x is an arbitrary nonsorted bit-string with k ones, then a comparator network can be constructed from
the canonical k-ones single exception sorting network using the technique of Theorem 7 of [16]. �

This new construction can be used to improve slightly on the results in [16], and to improve slightly
on the bound in Theorem 5.3.

Theorem 6.2 NONSORT is NP complete even for n-input sorting networks of depth 2D(n)+2�log n�+6.

Proof: Use Theorem 6.1 in the construction of Theorem 5.3. �

n 2n 2n

Sort

Min of

Pair Sort

Insert into

5n/3

5n-1

10n/3-1

Figure 10: Details of the selector construction.

7 Improved Selectors

The selective sorting network described in Section 5 was developed using general techniques which will work
for any exception set of the appropriate form. However, the exception set that appears in the reduction of
Section 4 has additional special properties which allow a reduction in the depth bound.

Let us re-draw the selector using the canonical single exception sorting network from Section 6 (see
Figure 10). The selector consists of the pair sorter of depth D(n), a sorting network of depth D(5n), and
a min network and an insertion network of combined depth 2�log(5n)� − 1. Thus the total depth of the
5n-input selector is 2D(5n) + 2�log(5n)� − 1. We route the last 2n/3 outputs from the pair sorter to the
right of the first 4n/3 outputs, so that the exception becomes 15n/3010n/3 instead of 1n04n/312n/302n.

However, we have not used the fact that the output of the pair sorter is sorted in pairs. Thus there is
no need for the sorting network in the part of the selector corresponding to the single exception sorting
network. If we sort the first n and last 2n values in parallel with the pair sorter, then all we need to do is
merge the sorted pairs in two groups after the pair sorter, and merge these with the outputs of the sorters
(see Figure 11).

Parberry [12] gives a construction for an n-input pair merger (which is called an alternating merging
network in that reference), of depth �log n�. Batcher [3] gives a construction for an n-input merging
network of depth �log n� + 1. Therefore the new 5n-input selector has depth bounded above by D(2n)
for the sorters, plus �log(4n/3)� ≤ �log(5n)� − 1 for the pair mergers, plus �log(5n)� + 1 for each of two
mergers, plus �log(5n)� for the inserter, giving a total of D(2n) + 4�log(5n)� + 1.

Therefore, we obtain the main result of this paper:

n 2n 2n

Pair Sort SortSort

Pair Merge

Merge

MergeMerge

Insert

Pair
Merge

Figure 11: Details of the modified selector construction.

Theorem 7.1 NONSORT is NP complete even for n-input sorting networks of depth D(n)+4�log n�+7.

Proof: The proof is similar to that of Theorem 5.3, substituting the more efficient selector described in
this section. The depth in this case is bounded above by 3 for the variable components, 3 for the clause
components, plus D(2n/5) + 4�log n� + 1 for the selector. �

8 Conclusion and Open Problems

We have shown that sorting network verification is intractable even for sorting networks of depth D(n) +
4�log n� + 7, where D(n) is the depth of an optimal n-input sorting network. This is smaller by a factor
of two than previous results. Our result is fairly strong, given the current state of knowledge about D(n),
which is that �log n� ≤ D(n) < 6100�log n� (the lower bound is obvious, and the upper bound is from
Paterson [17]). We conjecture that sorting network verification remains intractable even for the shallowest
sorting networks, that is, sorting networks of depth D(n).

It is also interesting to consider the depth of single exception sorting networks, since their existence
implies an exponential time lower bound for deterministic and probabilistic verification algorithms based
on the zero-one principle (Parberry [16]). If S(n) is the minimum depth of an n-input single exception
sorting network, we know that D(n)− 1 ≤ S(n) ≤ D(n) + 2�log n�− 1, where D(n) is the minimum depth
of an n-input sorting network. We conjecture that S(n) = D(n).

It should be noted that it is an open problem as to whether the result of Theorem 7.1 is better than
that of Theorem 6.2. The former is better than the latter iff D(n) ≥ 2�log n� − 1, which is the case for
large enough n (Yao [20]).

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n. log n) sorting network. Proc. 15th Ann. ACM Symp.
on Theory of Computing, pages 1–9, April 1983.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica, 3:1–48, 1983.

[3] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS Spring Joint Computer
Conference, volume 32, pages 307–314, April 1968.

[4] R. C. Bose and R. J. Nelson. A sorting problem. J. Assoc. Comput. Mach., 9:282–296, 1962.

[5] M. Chung and B. Ravikumar. On the size of test sets for sorting and related problems. In Proc. 1987
International Conference on Parallel Processing. Penn State Press, August 1987.

[6] M. J. Chung and B. Ravikumar. Strong nondeterministic Turing reduction — a technique for proving
intractability. J. Comput. System Sci., 39(1):2–20, 1989.

[7] R. L. Drysdale. Sorting networks which generalize batcher’s odd-even merge. Honors Paper, Knox
College, May 1973.

[8] R. W. Floyd and D. E. Knuth. Improved constructions for the Bose-Nelson sorting problem (prelimi-
nary report). Notices of the AMS, 14:283, 1967.

[9] R. W. Floyd and D. E. Knuth. The Bose-Nelson sorting problem. In J. N. Srivastava, editor, A Survey
of Combinatorial Theory. North-Holland, 1973.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[11] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley,
1973.

[12] I. Parberry. The alternating sorting network. Technical Report CS-87-26, Dept. of Computer Science,
Penn. State Univ., September 1987.

[13] I. Parberry. Parallel Complexity Theory. Research Notes in Theoretical Computer Science. Pitman
Publishing, London, 1987.

[14] I. Parberry. Sorting networks. Technical Report CS-88-08, Dept. of Computer Science, Penn. State
Univ., March 1988.

[15] I. Parberry. A computer-assisted optimal depth lower bound for sorting networks with nine inputs.
In Proceedings of Supercomputing ’89, pages 152–161, 1989.

[16] I. Parberry. Single-exception sorting networks and the computational complexity of optimal sorting
network verification. Mathematical Systems Theory, 23:81–93, 1990.

[17] M. S. Paterson. Improved sorting networks with O(log n) depth. Algorithmica, 5(4):75–92, 1990.

[18] T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Symposium on
Theory of Computing, pages 216–226. Association for Computing Machinery, 1978.

[19] D. C. Van Voorhis. An economical construction for sorting networks. In Proc. AFIPS National
Computer Conference, volume 43, pages 921–926, 1974.

[20] A. Yao. Bounds on selection networks. SIAM Journal on Computing, 9, 1980.

