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Abstract

It is shown that the loading problem for a 6 node neural network with node function
set AC0

1 (that is, the conjunction or disjunction of a subset of the inputs or their
complements) is NP complete. It can be deduced from this observation that the
loading problem for a 6 node analog neural network is NP hard.

1 Introduction

Judd [5, 6, 7, 8] has shown that the problem of loading simple tasks onto neural networks
with a fixed architecture is NP complete, which implies that there is quite likely to be no fast
learning algorithms even for quite simple architectures and node function sets. Surprisingly,
the loading problem is NP complete even for networks of size 3 if the node function set is
the set of linear threshold functions (Blum and Rivest [1, 2]).

One weakness of the result of Blum and Rivest is that it holds only for node function
sets that are exactly weighted linear threshold functions. Judd’s techniques work for any
node function set that includes AC0

1 and hence apply to analog neural networks, but he has
no results for a fixed number of nodes. We show a result that is as general as Judd’s, but
has a fixed node bound. Specifically, we show that the loading problem for a 6 node neural
network with node function set AC0

1 is NP complete. We deduce from this that the loading
problem for a 6 node analog neural network is NP hard.

To simplify the presentation, we first show that the loading problem for a 4 node neural
network with node function set equal to AC0

1 plus the three-input equality function (the
Boolean function that outputs 1 iff its three inputs are identical) is NP complete, and then
indicate how the required results can be derived in a similar, but less convenient fashion.

∗Author’s address: Department of Computer Sciences, University of North Texas, P.O. Box 13886, Den-
ton, TX 76203-3886, U.S.A. Electronic mail: ian@ponder.csci.unt.edu.
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We assume that the reader is familiar with the rudiments of the theory of NP completeness.
The interested reader can consult a standard text such as Garey and Johnson [4].

The remainder of this paper is divided into three short sections. The first describes the
loading problem in more technical detail, the second contains the main results, and the third
concludes and gives open problems.

2 The Loading Problem

An architecture is a 4-tuple A = (V,X, Y, E), where

V is a finite ordered set
X is a finite ordered set such that X ∩ V = ∅
Y ⊆ V
(V ∪X,E) is a directed, acyclic graph.

The set V represents a set of nodes, X represents a set of inputs, and Y represents a set of
outputs. E represents the connections between the nodes, the inputs, and the outputs. The
graph (V ∪X,E) is called the interconnection pattern of C.

A neural network is a 3-tuple C = (A,F , �), where A is an architecture, F is a set of
functions with domain IB∗ and range IB, and � :V →F . Each node v ∈ V computes a Boolean
function from the node function set F determined by the node function assignment �.

Let C = (A,F , �) be a neural network, where A = (V,X, Y, E), X = {x1, . . . , xn} and
Y = {y1, . . . , ym}. For each input b1, . . . , bn ∈ IB, and each g ∈ V ∪ X, define the value
of node g on input b1, . . . , bn, denoted v(g), as follows. If g = xi for some 1 ≤ i ≤ n,
then v(g) = bi. If g ∈ V , g has in-degree m, (gi, g) ∈ E for 1 ≤ i ≤ m, and �(g) = f ,
then v(g) = f(g1, . . . , gm). The output of C on inputs b1, . . . , bn ∈ IB is defined to be
v(y1), . . . , v(ym).

Suppose A = (V,X, Y, E) is an architecture with ‖X‖ = n and ‖Y ‖ = m. A task for A is
an element of IBn × (IB∪ {∗})m. A task set is a set of tasks. Intuitively, the first component
of a task is an input string and the second component is the desired output string, where the
starred values are “don’t-cares”. If � :V →F , the neural network corresponding to A and � is
given by A(�) = (A,F , �). A neural network A(�) is said to support task (x1 · · ·xn, y1 · · · ym)
if the output of A(�) on input (x1, . . . , xn) is (z1, . . . , zm), where for all 1 ≤ i ≤ m, if yi ∈ IB,
then zi = yi. A neural network A(�) is said to support a task set if it supports every task in it.
The loading problem for node function set F is the following problem: given an architecture
A and a task set T , find a node function assignment � :V →F such that A(�) supports T .

The loading problem is clearly computable (simply try all combinations of functions from
the node function set), but is it feasibly computable? That is, is there a polynomial time
algorithm that solves it? If there were, then there would be one for the following decision
problem:

The Loading Problem
Instance: An architecture A and a task set T
Question: Is there a node function assignment � such that A(�) supports T ?
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Figure 1: The architecture corresponding to an instance of not-all-equal 3SAT with n vari-
ables and m clauses in Theorem 3.1.

3 The Main Result

Theorem 3.1 The loading problem for neural networks of 4 nodes is NP complete.

Proof: It is clear that the loading problem for neural networks of 4 nodes is a member of
NP. It remains to show that it is NP hard. We will show that not-all-equal 3SAT reduces
in polynomial time to the loading problem for neural networks of 4 nodes. Since not-all-equal
3SAT is NP complete (Schaefer [10]), this is sufficient to show that our loading problem is
NP hard. Not-all-equal 3SAT is defined as follows:

Not-all-equal 3SAT
Instance: A set of clauses with 3 literals per clause.
Question: Is there an assignment of values to the variables such that no clause
has all of its literals assigned the same value?

For each variable x, let x[0] denote x, x[1] denote x, x[0] denote x, and x[1] denote x.
Suppose we are given an instance of not-all-equal 3SAT, C = {Ci | 1 ≤ i ≤ m} for some
m ∈ IN, where each Ci is a set of three literals over the variables x1, . . . , xn. Suppose for all
1 ≤ j ≤ m, that clause Cj uses variables xjk

for 1 ≤ k ≤ 3.
The architecture corresponding to an instance of not-all-equal 3SAT with n inputs and

m clauses is A = (V,X, Y, E), where (see Figure 1)

V = {v1, v2, v3, c}
X = {xj | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ i ≤ n} ∪ {zj | 1 ≤ i ≤ n} ∪

{xj | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ i ≤ n} ∪ {zj | 1 ≤ i ≤ n}
Y = V

E = {(xi, v1), (xi, v1), (yi, v2), (yi, v2), (zi, v3), (zi, v3) | 1 ≤ i ≤ n} ∪
{(vi, c) | 1 ≤ i ≤ 3}.
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We will construct a set of tasks that force A to behave as follows. Inputs (x1, . . . , xn),
(y1, . . . , yn), and (z1, . . . , zn) will each encode a variable number in unary. Node vi will be
forced to output 0 when all of its inputs are 0, and to output 1 when all of its inputs are 1.
Node c will be forced to output 1 iff the three values output by v1, v2, and v3 are identical.
Note that since node c does not have direct access to the inputs, it will be forced to compute
that function regardless of the value of the inputs. Nodes v1, v2, and v3 will also be forced
to output a value for each literal when the index of that literal is encoded in their inputs. A
set of tasks will ensure consistency of variables between the nodes (that is, when v1, v2, and
v3 are asked about the same literal, they will output the same value). Another set of tasks
will ensure consistency of literals within the nodes (that is, when each one of v1, v2, and v3

is asked about a variable and its complement, it will output different values). Additional
tasks will force the neural network to solve not-all-equal 3SAT.

For convenience, we will use 0n as a shorthand for the string of n zeros, and 1n as a
shorthand for the string of n ones. For all n ∈ IN, let δ0

n, δ
1
n : IN→ IB2n be defined as follows:

δ0
n(i) = 0n0n−i10i−1

δ1
n(i) = 0n−i10i−10n.

The first set of tasks are called equality enforcers. These force vi to output 0 when all
of its inputs are 0 and to output 1 when all of its inputs are 1, for 1 ≤ i ≤ 3, and force
c to output 1 iff the three values it sees are identical. Equality enforcers have the form
T1(a, b, c, d) = (ananbnbncncn, dabc), where a, b, c, d ∈ IB. We use equality enforcers:

T1(0, 0, 0, 1) T1(1, 0, 0, 0)
T1(0, 0, 1, 0) T1(1, 0, 1, 0)
T1(0, 1, 0, 0) T1(1, 1, 0, 0)
T1(0, 1, 1, 0) T1(1, 1, 1, 1).

The second class of tasks are called consistency enforcers. These tasks ensure that the
value chosen for each literal by v1, v2, and v3 is the same for each node. This is achieved
with tasks of the following form, for 1 ≤ i ≤ n:

(δ0
n(i)δ0

n(i)δ0
n(i), 1∗∗∗) (δ1

n(i)δ1
n(i)δ1

n(i), 1∗∗∗).

The third class of tasks are called complement enforcers. These tasks ensure that nodes
v1, v2, and v3 correctly complement their variables when called upon to do so. These tasks
have the following form, for 1 ≤ i ≤ n:

(δ0
n(i)δ0

n(i)δ1
n(i), 0∗∗∗) (δ0

n(i)δ1
n(i)δ0

n(i), 0∗∗∗)
(δ0

n(i)δ1
n(i)δ1

n(i), 0∗∗∗) (δ1
n(i)δ0

n(i)δ0
n(i), 0∗∗∗)

(δ1
n(i)δ0

n(i)δ1
n(i), 0∗∗∗) (δ1

n(i)δ1
n(i)δ0

n(i), 0∗∗∗).

The fourth set of tasks are called computation tasks. These tasks ensure that C is
satisfiable. For each clause Cj = {xj1[αj ], xj2 [βj], xj3 [γj]} (where αj , βj, γj ∈ IB), we have a
task

(δαj
n (j1)δβj

n (j2)δβj
n (j3), 0∗∗∗).
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Task Type Tasks
Equality (0000 0000 0000 0000 0000 0000 , 1 000) (0000 0000 0000 0000 1111 1111 , 0 001)

(0000 0000 1111 1111 0000 0000 , 0 010) (0000 0000 1111 1111 1111 1111 , 0 011)
(1111 1111 0000 0000 0000 0000 , 0 100) (1111 1111 0000 0000 1111 1111 , 0 101)
(1111 1111 1111 1111 0000 0000 , 0 110) (1111 1111 1111 1111 1111 1111 , 1 111)

Consistency (0000 0001 0000 0001 0000 0001 , 1 ∗∗∗) (0001 0000 0001 0000 0001 0000 , 1 ∗∗∗)
(0000 0010 0000 0010 0000 0010 , 1 ∗∗∗) (0010 0000 0010 0000 0010 0000 , 1 ∗∗∗)
(0000 0100 0000 0100 0000 0100 , 1 ∗∗∗) (0100 0000 0100 0000 0100 0000 , 1 ∗∗∗)
(0000 1000 0000 1000 0000 1000 , 1 ∗∗∗) (1000 0000 1000 0000 1000 0000 , 1 ∗∗∗)

Complement (0000 0001 0000 0001 0001 0000 , 0 ∗∗∗) (0000 0001 0001 0000 0000 0001 , 0 ∗∗∗)
(0000 0001 0001 0000 0001 0000 , 0 ∗∗∗) (0001 0000 0000 0001 0000 0001 , 0 ∗∗∗)
(0001 0000 0000 0001 0001 0000 , 0 ∗∗∗) (0001 0000 0001 0000 0000 0001 , 0 ∗∗∗)
(0000 0010 0000 0010 0010 0000 , 0 ∗∗∗) (0000 0010 0010 0000 0000 0010 , 0 ∗∗∗)
(0000 0010 0010 0000 0010 0000 , 0 ∗∗∗) (0010 0000 0000 0010 0000 0010 , 0 ∗∗∗)
(0010 0000 0000 0010 0010 0000 , 0 ∗∗∗) (0010 0000 0010 0000 0000 0010 , 0 ∗∗∗)
(0000 0100 0000 0100 0100 0000 , 0 ∗∗∗) (0000 0100 0100 0000 0000 0100 , 0 ∗∗∗)
(0000 0100 0100 0000 0100 0000 , 0 ∗∗∗) (0100 0000 0000 0100 0000 0100 , 0 ∗∗∗)
(0100 0000 0000 0100 0100 0000 , 0 ∗∗∗) (0100 0000 0100 0000 0000 0100 , 0 ∗∗∗)
(0000 1000 0000 1000 1000 0000 , 0 ∗∗∗) (0000 1000 1000 0000 0000 1000 , 0 ∗∗∗)
(0000 1000 1000 0000 1000 0000 , 0 ∗∗∗) (1000 0000 0000 1000 0000 1000 , 0 ∗∗∗)
(1000 0000 0000 1000 1000 0000 , 0 ∗∗∗) (1000 0000 1000 0000 0000 1000 , 0 ∗∗∗)

Computation (0001 0000 0010 0000 0000 0100 , 0 000) (0001 0000 0010 0000 0000 1000 , 0 000)
(0000 0001 0000 0010 0100 0000 , 0 000) (0010 0000 0000 0100 1000 0000 , 0 000)
(0000 0001 0100 0000 1000 0000 , 0 000)

Table 1: Tasks for the architecture shown in Figure 1 and not-all-equal 3SAT instance
{(x1, x2, x3), (x1, x2, x4), (x1, x2, x3), (x2, x3, x4), (x1, x3, x4).}

It is easy to devise a polynomial time algorithm circuit that constructs A and the task
set from any given instance of not-all-equal 3SAT C. It remains to show that C is satisfiable
iff A supports the tasks.

Suppose b1, . . . , bn is a satisfying assignment for C. It can be verified by inspection that
A supports the equality, consistency, complement, and computation tasks with the following
node function assignments. Let X = {i | bi = 1}. The node v1 computes the disjunction of
{xi | i ∈ X}∪{xi | i �∈ X}. Nodes v2 and v3 compute similar functions, replacing x by y and
z respectively. Node c computes the equality function.

Conversely, if A supports the tasks above, then by construction C is satisfied by setting
xi to the output of v1 on input δ1

n(i). ✷

For example, the task set for the instance of not-all-equal 3SAT

{(x1, x2, x3), (x1, x2, x4), (x1, x2, x3), (x2, x3, x4), (x1, x3, x4).}

is shown in Table 1.
By inspection, Theorem 3.1 holds for any node function set that includes all functions

in AC0
1 (that is, either the conjunction or disjunction of a subset of the inputs or their

complements) and the 3-input equality function. Is this a reasonable node function set?
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Figure 2: The architecture corresponding to an instance of not-all-equal 3SAT with n vari-
ables and m clauses in Theorem 3.2.

Judd [5, 6, 7, 8] concentrates on node function sets at least as powerful as AC0
1. The argument

of Blum and Rivest [1] works only for node functions that are weighted linear threshold
functions (which includes AC0

1). Our node function set is stronger then that of Judd, but
weaker than that of Blum and Rivest in the sense that no constant depth, polynomial size
circuit of functions drawn from our node function set can compute weighted linear threshold
functions (this is a simple consequence of Furst, Saxe, and Sipser [3]). Nonetheless, one can
prove the following:

Theorem 3.2 The loading problem for neural networks of 6 nodes with node function set
AC0

1 is NP complete.

Proof: The proof is similar to that of Theorem 3.1, replacing node c in architecture A
by a 3-node subcircuit (see Figure 2). The tasks force this subcircuit to compute the same
function as c. ✷

It is popular to study analog neural networks , in which the nodes compute functions of
the form f : (0, 1)k→(0, 1) (where (0, 1) denotes {r ∈ IR | 0 < r < 1}) defined by

f(x1, . . . , xk) = g(
k∑

i=1

wixi),

where wi ∈ IR for 1 ≤ i ≤ k, and g : IR→(0, 1) is a smooth, monotonic increasing function
with the property that limn→∞ g(n) = 1 and limn→−∞ g(n) = 0. For example, Rumelhart,
Hinton, and Williams [9] use g(x) = 1/(1 + e−x).
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Theorem 3.3 The loading problem for analog neural networks of 6 nodes is NP hard.

Proof: The proof is similar to that of Theorem 3.2, using techniques similar to those of
Judd [8, Appendix B]. ✷

4 Conclusion and Open Problems

How does one interpret the meaning of NP completeness results for the loading problem?
They imply that any learning algorithm that takes as input a set of tasks and a fixed
architecture runs the risk of taking exponential time in the worst case even for architectures
drawn from quite innocuous architecture classes. This can be avoided either by limiting
the node function set and choosing specific architectures for which the loading problem is
not intractable, by allowing the architecture to change during learning, or by only loading
task sets that do not cunningly encode NP complete problems. Results such as those in
this paper indicate that even very simple architectures and node function sets can have task
sets that encode NP complete problems. This can be a major pitfall for the unwary neural
network designer. Some open questions remaining are whether the three loading problems
studied in this paper remain NP complete with fewer nodes.
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