
Information Processing Letters 24 (1987) 363-367 6 April 1987
North-Holland

AN IMPROVED SIMULATION OF SPACE AND REVERSAL BOUNDED DETERMINISTIC
TURING MACHINES BY WIDTH AND DEPTH BOUNDED UNIFORM CIRCUITS

Ian PARBERRY
v

Department of Computer Science, The Pennsylvania State University, University Park, PA 16802, U.S.A.

Communicated by David Giles
Received 12 May 1986
Revised 4 August 1986

We present an improved simulation of space and reversal bounded Turing machines by width and depth bounded uniform
circuits. (All resource bounds hold simultaneously.) An S(n) space, R(n) reversal bounded deterministic k-tape Turing machine
can be simulated by a uniform circuit of O(R(n) log2S(n)) depth and O(S(n) k) width. Our proof is cleaner, and has slightly
better resource bounds than the original proof due to Pippenger (1979). The improvement in resource bounds comes primarily
from the use of a shared-memory machine instead of an oblivious Turing machine, and the concept of a 'special situation'.

Keywords: Deterministic k-tape Turing machine, shared-memory machine, uniform circuit, reversal, NC, extended parallel
computation thesis, reduction to sorting, simultaneous resource bounds

1. Introduction 2. Some machine models

Pippenger [16] has demonstrated that NC (the
class of languages recognized by polynomial size,
polylog depth uniform circuits) is precisely the
class of languages recognized by polynomial space,
polylog reversal deterministic Turing machines.
We assume the reader to be familiar with the
terminology of that paper, and for conciseness will
restrict ourselves mainly to those definitions which
differ for technical reasons. Pippenger's simula-
tion of Turing machines by circuits makes fre-
quent use of a reduction to sorting. We obtain a
more straightforward proof, with a slight improve-
ment in resource bounds, using a single reduction.

A preliminary version of the results in this
paper have appeared in [14], and in the author's
Ph.D. thesis [13]. The reader requiring a more
detailed account is directed to the latter reference.
The remainder of this paper is divided into two
sections, the first containing some definitions, and
the second containing the result.

In this section we sketch two popular parallel
machine models. Let Z denote the set of integers
and N denote the set of natural numbers. Let
D, P, S, T, W, Z : N ~ N.

A shared-memory machine consists of an in-
finite number of processors attached to a globally
accessible shared memory. Each processor pos-
sesses an infinite number of general purpose reg-
isters, and a unique read-only processor identity
register PID which is preset to i in the ith
processor, i ~ N. A program for this machine
consists of a finite list of instructions; each in-
struction is of the form either:

(i) read a value from the shared memory,
(ii) write a value to the shared memory,

(iii) perform an internal computation,
(iv) conditional transfer of control or halt.
The allowable internal computations usually

consist of direct and indirect register transfers,
and arithmetic operations. We will allow the arith-

0020-0190/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 363

Volume 24, Number ~ INFORMATION PROCESSING LETTERS 6 April 1987

metic operations of addition, subtraction and mul-
tiplication and division by powers of two.

More formally, a shared-memory machine is
specified by a program 9 ~ and a processor bound
P(n). A computation proceeds roughly as follows.
An input of size n (where the 'size' measure de-
pends on the problem in question) is broken up
into n unit-size pieces, and the ith piece is en-
coded as an integer and stored in shared memory
location i, 0 ~< i < n. All other memory locations
and general purpose registers are set to zero.
Processors 0, 1 , . . . , P (n) - 1 are activated simulta-
neously; they synchronously execute the program
~ . When all processors have halted, the output is
to be found in some specified place in the shared
memory.

The processor bound P(n) is a measure of the
number of processors used as a function of input
size. The space S(n) is the maximum number of
nonzero entries in the shared memory and reg-
isters at any time during the computation. (Note
that this includes the input and the processor
identity registers, so S(n) >/n + P(n) - 1.) The
machine is said to have word-size W(n) if every
value placed into a register or shared memory
location during a computation on an input of size
n has absolute value less than 2 w(~). The time
bound T(n) is the number of instructions executed
before all processors have halted, again as a func-
tion of input size.

Variants of this model have appeared, for ex-
ample, in [9,10,11,12,18,19,20,21,22]. We assume
some reasonable protocol for dealing with mem-
ory access conflicts, as in those references. The
general consensus of opinion is that whilst the
shared-memory model is a powerful theoretical
tool, it is not feasibly buildable using any fore-
seeable technology. Note that our space bound is
slightly unusual. It is more normal to measure the
'number of registers or memory locations used'
regardless of the amount of time during which
they are active (see, for example, [1] for the case of
a single RAM).

A uniform circuit is an infinite family C =
(Co, Ca) of combinational circuits, one for each
input size (see, for example, [5,6,16,17]). Without
loss of generality we assume that the circuits are
built using gates which realize functions drawn

from the class B: of two-input Boolean functions.
An input of size n is presented, in some suitably
encoded form, to the inputs of C n. The output of
C n is then taken as the output of C. C is said to
have depth D(n) if the length of the longest path
from an input to an output in Cn is at most D(n),
for n >~ 0. It has width W(n) if Cn has width (as
defined in [16]) W(n) and size Z(n) if Cn has Z(n)
gates. We assume D(n) = ~ (log W(n)).

The function f :N2)< (left, r igh t} -oN, where
for n >i 0 the j-input of gate i >~ n is connected to
the output of gate f(i, n, j) (we assume that gates
0, 1 , . . . , n - 1 are distinguished gates representing
the inputs), is called the interconnection function of
C. The function g : N 2 _..]32 ' where for n >~ 0 gate
i >/n of C~ is a g(i, n)-gate, is called the gate
function of C. We insist that the interconnection
and gate functions be computable by a determinis-
tic Turing machine in O(log Z(n)) space.

2.1. Lemma. Every shared-memory machine which
uses S(n) space, T(n) time and W(n) word-size can
be simulated by a uniform circuit of O(T(n) log S(n))
depth and O(S(n)W(n)) width.

Proof. The proof uses the common method of
' reduction to sorting' (see, for example, [13,14,15]),
and the sorting network of Ajtai, Koml6s and
Szemerrdi [2,3]. []

3. The simulation theorem

The extended parallel computation thesis of
Dymond [7] (see also [8]) states that parallel time
and hardware (on any 'reasonable' model) are
simultaneously polynomially equivalent to rever-
sals and space on a deterministic Turing machine.
The justification for this is based on the seminal
paper by Pippenger [16] which relates depth and
size of uniform circuits to Turing machine rever-
sals and time. Dymond prefers to use Turing
machine space instead of time, and circuit width
as a measure of hardware (rather than size) since
it is a measure of the amount of hardware which
comes into play at any given instant in time. The
aim of this section is to provide an improved
simulation of space and reversal bounded Turing

364

Volume 24, Number 6 INFORMATION PROCESSING LETTERS 6 April 1987

machines by width and depth bounded uniform
circuits.

We follow the general structure of the proof
appearing in [16]. Pippenger simulates a Turing
machine on an oblivious Turing machine, and
then simulates this on a uniform circuit. We will
simulate a Turing machine on a shared-memory
machine. We can then build a uniform circuit by
application of Lemma 2.1.

3.1. Theorem. An S(n) space, R(n) reversal bounded
k-tape deterministic Turing machine can be simu-
lated on a shared-memory machine with O(S(n)k/
log S(n)) processors and space, O(R(n) log S(n))
time, and O(log S(n)) word-size.

Proof. Let M be a k-tape deterministic Turing
machine which runs in S(n) space and R(n) rever-
sals. Following [16] define a phase to be all the
steps of M from one reversal to the next (the first
move is counted as a reversal for this purpose),
and a situation to be the control state and head
positions of M. It may be assumed that all transi-
tion rules of M which write a new value onto a
tape cell also move the head away from that cell.
This implies that symbols written during one phase
cannot be read until the next. Let d(n)---
2I~og ~og so~)l and call a situation special if it has at
least one head on the (i-d(n))th cell of its tape,
for some i ~ N . Note that there are at most
O(S(n)k/1og S(n)) special situations, and that at
most O(log S(n)) steps of M can occur between
special situations.

The simulation proceeds roughly as follows.
The tape contents at the start of the current phase,
the head directions and the initial situation for the
current phase are stored in the shared memory.
This is easy to do at the start of the initial phase;
the algorithm will maintain this information from
phase to phase. We reserve one processor (and two
shared-memory locations) for each special situa-
tion. The aim is to have these processors confer,
via the shared memory, and decide which special
situations are involved in the current phase. The
processors corresponding to these special situa-
tions then simultaneously update the tape cell
contents in shared memory; the final situation
(which is detected by an attempted reversal) de-

termines the head directions and the initial situa-
tion for the next phase. This proceeds for a total
of R(n) phases.

The simulation of a phase is achieved as fol-
lows. Processor i handles the ith special situation.
Firstly, each processor i computes in parallel the
special situation which follows from special situa-
tion i, by doing a step-by-step read-only simula-
tion of M on the tape contents in shared memory
(by 'read-only simulation' we mean that the tape-
contents are not updated). This value is stored
into array element s[i] in shared memory. If an
illegal situation occurs during this process, or a
reversal is detected (determined by examining the
head directions for the current phase, which are
stored in shared memory), then s[i] is set to i. All
processors i execute the following code synchro-
nously in parallel. Before activation, shared array
element active[i] is set to true iff situation i is the
first situation in the current phase. Upon termina-
tion, active[i] will be true iff special situation i
occurs in the current phase. Each processor can
determine whether its special situation is the first
special situation to occur in the current phase by
using a step-wise read-only simulation of M start-
ing at the initial situation of the phase.

for b := 1 to [log S(n)] do
if active[i] then active[s[i]] := true
s[i] := s[s[i]]

Suppose that s o is the initial situation of the
current phase, and that the subsequent situations
in the current phase are s l , . . . , Ss0~)-l. It can easily
be proved by induction on m that after the ruth
interation of the for-loop, active[sj] is true for
0 ~< j < 2 m, active[i] is false for all other situations
i, and

= f sj+2" for 0 ~< j < S(n) - 2 m,
SIs j]

sj for S(n) - 2 m ~< j < S(n) .

Those processors i with active[i] = true can then
update the tape contents; the last special situation
is readily available (in all entries of s), from which
the final situation of the current phase can be
determined. The running time is dominated by
O(log S(n)) for each phase. This comes from:

365

Volume 24, Number 6 INFORMATION PROCESSING LETTERS 6 April 1987

(1) decoding of PIDs (each of O(log S(n)) bits)
into special situations,

(2) determining the first special situation from
the initial situation and the final situation from
the last special situation by simulating at most
O(log S(n)) steps of M,

(3) computing the special-situation transition
function by simulating O(log S(n)) steps of M,

(4) computing the active array in O(log S(n))
steps,

(5) updating the tape contents by simulating
O(log S(n)) steps of M.

Repeating this for R(n) phases gives us the
required result. D

3.2. Corollary. An S(n) space, R(n) reversal
bounded deterministic k-tape Turing machine can be
simulated by a uniform circuit of O(R(n) log2S(n))
depth and O(S(n) k) width.

Proof. The proof follows from Theorem 3.1 and
Lemma 2.1. []

3.3. Corollary. A T(n) time, R(n) reversal bounded
deterministic k-tape Turing machine can be simu-
lated by a uniform circuit of O(R(n)logeT(n))
depth and O(R(n)T(n)klog2T(n)) size.

This is a small improvement over the original
results of Pippenger [16], whose size and depth
bounds are inferior by a factor of O(log2T(n)).
Our improvements can be summarized as follows:

(i) A factor of O(log T(n)) is easily removed
from both the size and the depth by using the
sorting network of Ajtai, Koml6s and Szemer&li
in place of the sorting network (due to Batcher [4])
used by Pippenger.

(ii) A factor of O(log T(n)) is removed from
the depth by using shared-memory machines in-
stead of oblivious Turing machines.

(iii) A factor of O(log T(n)) is removed from
the size by using 'special situations'.

Acknowledgment

The author wishes to thank Mike Paterson for a
suggestion which led to the concept of a 'special
situation'.
366

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).

[2] M. Ajtai, J. Koral6s and E. Szemer6di, An O(n log n)
sorting network, Proc. 15th Ann. ACM Syrup. on Theory
of Computing, Boston, MA (1983) 1-9.

[3] M. Ajtai, J. Koml6s and E. Szemer6di, Sorting in c log n
parallel steps, Combinatorica 3 (1983) 1-48.

[4] K.E. Batcher, Sorting networks and theft applications,
Proe. AFIPS Spring Joint Computer Conf., Vol. 32 (I968)
307-314.

[5] A. Borodin, On relating time and space to size and depth,
SIAM J. Comput. 6 (4) (1977) 733-744.

[6] S.A. Cook, Deterministic CFL's are accepted simulta-
neously in polynomial time and log squared space, Proc.
l l th Ann. ACM Symp. on Theory of Computing (1979)
338-345.

[7] P.W. Dymond, Simultaneous resource bonds and parallel
computations, Ph.D. Thesis, Tech. Rept. TR145/80, Dept.
of Computer Science, Univ. of Toronto, 1980.

[8] P.W. Dymond and S.A. Cook, Hardware complexity and
parallel computation, Proc. 21st Ann. IEEE Syrup. on
Foundations of Computer Science (1980) 360-372.

[9] S. Fortune and J. Wyllie, Parallelism in random access
machines, Proc. 10th Ann. ACM Syrup. on Theory of
Computing (1978) 114-118.

[10] Z. Galil and W.J. Paul, An efficient general purpose
parallel computer, J. ACM 30 (2) (1983) 360-387.

[11] L.M. Goldschlager, A universal intercormection pattern
for parallel computers, J. ACM 29 (4) (1982) 1073-1086.

[12] D. Nassimi and S. Sahni, Parallel permutation and sorting
algorithras and a new generalized connection network, J.
ACM 29 (3) (1982) 642-667.

[13] I. Parberry, A complexity theory of parallel computation,
Ph.D. Thesis, Dept. of Computer Science, Univ. of
Warwick, 1984.

[14] I. Parberry, Some practical simulations of impractical
parallel computers, in: P. Bertollazzi and F. Lucio, eds.,
VLSI: Algorithms and Architectures, Proc. International
Workshop on Parallel Computing and VLSI (North-Hol-
land, Amsterdam, 1985) 27-37.

[15] I. Parberry, Some practial simulations of impractical
parallel computers, Parallel Comput. 4 (1) (1987) 93-101.

[16] N. Pippenger, On simultaneous resource bounds, Proc.
20th Ann. IEEE Symp. on Foundations of Computer
Science (1979) 307-311.

[17] W.L. Ruzzo, On uniform circuit complexity, J. Comput.
System Sci. 22 (3) (1981) 365-383.

[18] J.T. Schwartz, Ultracomputers, ACM TOPLAS 2 (4) (1980)
484-521.

[19] Y. Shiloach and U. Vishkin, Finding the maximum, sort-
ing and merging in a parallel computation model, J.
Algorithms 2 (1981) 88-102.

[201 E. Upfal, A probabilistic relation between desirable and
feasible models for parallel computation, Proc. 16th Ann.
ACM Syrup. on Theory of Computing, Washington, D.C.
(1984) 258-265.

Volume 24, Number 6 INFORMATION PROCESSING LETTERS 6 April 1987

[21] U. Vishkin, Implementation of simultaneous memory ad-
dress accesses in models that forbid it, J. Algorithms 4 (1)
(1983) 45-50.

[22] U. Vishkin, A parallel-design space distributed implemen-
tation space (PDDI) general purpose computer, Theoret.
Comput. Sci. 32 (1984) 157-172.

367

