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Abstract

It is shown that in a standard discrete neural network model with small
fan-in, tolerance to random malicious faults can be achieved with a log-linear
increase in the number of neurons and a constant factor increase in parallel
time, provided fan-in can increase arbitrarily. A similar result is obtained for
a nonstandard but closely related model with no restriction on fan-in.

1 Introduction

One advantage that biological neural systems have over conventional computers is
their ability to perform reliable computations with unreliable hardware. Carver Mead
(quoted in [6]) has observed that:

“The brain has this wonderful property - you can go through and shoot out
every tenth neuron and never miss them”.

A plausible interpretation of this observation is that correct computations can be
carried out with high probability when one of of ten neurons are destroyed at random.

We say that a circuit is reliable if it performs correctly with high probability in
the presence of random faults. That is, if the neurons are damaged independently
with low probability, then with high probability the circuit still computes the same
function. We will show that discrete neural networks can be made reliable with a
small increase in size and depth (at most a low-degree polynomial, and a constant
factor, respectively).

The results in this paper can be re-expressed in a stochastic model in which the
gates in the circuit are noisy in the sense that they fail independently with probability
ε. Similar work has been done on the simulation of standard circuits of fan-in 2
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by reliable circuits of fan-in 2 (see von Neumann [16], Dobrushin and Ortyukov [3],
Pippenger [13, 14], and Feder [4]). We apply Pippenger’s techniques to the simulation
of standard circuits of small fan-in f by reliable threshold circuits of arbitrary fan-
in. We find that any threshold circuit of size z and depth d with small fan-in can
be simulated by a reliable threshold circuit of size O(z log z) and depth O(d). Our
bounds are much cleaner and expose a fundamental relationship between the size and
accuracy of the reliable circuit: whilst the size of the reliable circuit must be larger
than that of the original threshold circuit by a log-linear amount, the accuracy of the
reliable circuit (which is a measure of its reliability compared to the optimum) can
be increased with only a further linear increase in size.

The problem of whether a similar result holds for the simulation of unbounded fan-
in threshold circuits by reliable threshold circuits is still open. Hajnal et al. [5] have
a result of the correct nature, but with an increase in size that is superexponential
in depth. We present a reliability result of the right flavour in a slightly different
model, called a summation circuit. Summation circuits are technologically plausible
and equivalent in resource usage to threshold circuits in an error-free environment.

The main body of this paper is divided into five short sections. The first section
contains a description of threshold circuits. The second section contains a reminder
of some important results from probability theory. The third section contains the
reliability result for small fan-in threshold circuits. The fourth section contains a
description of summation circuits. The fifth section contains the reliability result for
summation circuits.

A preliminary version of the results in this paper was presented in a poster session
at the First Annual Meeting of the International Neural Network Society in Boston,
MA, in September 1988. An earlier version of the results in Section 4 appears in
Parberry [9].

Throughout this paper, R denotes the set of real numbers, R+ denotes the set of
positive real numbers, Z the set of integers, N the set of natural numbers, and B the
Boolean set {0, 1}. All logarithms are to base two unless otherwise indicated.

2 Threshold Circuits

A threshold function f :Bn→B is defined by a set of weights w1, . . . , wn ∈ R and a
threshold h ∈ R as follows. If x1, . . . , xn ∈ B,

f(x1, . . . , xn) = 1 iff
n∑

i=1

wixi ≥ h.

Some examples of threshold functions include conjunction (wi = 1 for 1 ≤ i ≤ n,
h = n), disjunction (wi = 1 for 1 ≤ i ≤ n, h = 1), complement (n = 1, w1 = −1,
h = 0), and majority (wi = 1 for 1 ≤ i ≤ n, h = n/2), A threshold gate is a device
that computes a threshold function.

A threshold circuit is a finite layered circuit constructed without feedback from
threshold gates. We assume no bound on the fan-out of the circuit (the number of

2



places that the output of each gate gets used), nor on the fan-in (the number of
inputs to each gate). A threshold circuit with n inputs and m outputs computes a
function with domain Bn and range Bm in the natural way. We will for the most part
restrict ourselves to the case m = 1. The size of a threshold circuit is the number of
gates used. The depth is the number of layers. We assume that the circuit operates
in parallel, so that the size is a measure of hardware requirements, and the depth is
a measure of parallel time requirements.

Threshold circuits are a simple discrete neural network model that is well-studied
in the literature. For example, it is known that for every threshold function there
exists a set of weights w1, . . . , wn ∈ Z such that wi = O(n(n+1)/2/2n) for 1 ≤ i ≤ n
(Muroga, Toda, and Takasu [8]). We will, throughout this paper, assume that the
weights are integers within this bound. It is well known that the weights can be
made ±1 with only a polynomial increase in size and a constant multiple increase
in depth (Parberry and Schnitger [11, 12]). Siu and Bruck [15] have improved the
size and depth overheads in exchange for increasing the weights to a polynomial in
the fan-in. For a survey of elementary results on threshold circuits, the reader can
consult Parberry [9, 10].

3 A Result from Probability Theory

We will make great use of the following well-known result from probability theory.
Suppose we make m independent Bernoulli trials each with probability ε of failure.
Let B(k, m, ε) denote the probability that at least k trials fail.

Lemma 3.1 If k ≥ εm, then B(k, m, ε) ≤ (εm/k)k((1 − ε)m/(m − k))m−k.

Proof: See Chernoff [2]. �

The following result from Angluin and Valiant [1] states that the probability of
substantially more than the expected number of failures happening is exponentially
small in the size of the sample.

Lemma 3.2 If k = εm(1 + β) for some 0 ≤ β ≤ 1, then B(k, m, ε) ≤ e−β2εm/2.

Proof: The proof follows from Lemma 3.1. �

4 Reliable Threshold Circuits

Suppose f :Bn→B is a Boolean function, and C is a Boolean circuit. We say that C
fails to compute f on input x if the output of C on input x is not f(x), and that C
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fails to compute f if it fails to compute f(x) for some input x. C is (µ, ε)-resilient
on f for some 0 ≤ µ + ε ≤ 1 if the probability that C fails to compute f is at most
µ + ε when each of the gates of C is damaged independently with probability at
most ε. Note that µ ≥ 0, since the output gate will be damaged with probability ε.
Intuitively, the ε term in the µ + ε is the probability of harming the output gate, and
µ is the probability of harming the rest of the circuit. Our aim is to minimize µ.

We wish to be able to deal with a worst-case scenario in which damage to a gate
may cause adversarial behaviour. That is, a damaged gate may behave in the worst
possible fashion. We will assume no bound on the fan-in and fan-out of C, and that
reliable inputs are available. The latter assumption is not crucial, and can be replaced
by an assumption that the inputs can be repeatedly sampled with independent failure
probability at most ε.

Theorem 4.1 Every function computed by a threshold circuit of fan-in f, size z, and

depth d can be computed by a (µ, ε)-resilient threshold circuit with size

4z

εβ2
(ln z + ln

2

µ
) + 1

and depth 2d + 1, for all 1/4(f + 1) ≤ ε < 1/2(f + 1) and µ > 0, where β =

1/2ε(f + 1) − 1.

Proof: Let C be a circuit of fan-in f , size z, and depth d. We construct a new
circuit C ′ as follows. Each wire in C is replaced by a cable, which consists of m wires
(m will be given explicitly later). Each gate in C will be replaced by a circuit that has
two input cables and an output cable. A wire w in one of these cables will be called
correct if it always carries the same value as the wire in C that the cable replaces. A
cable will be called correct if at most θm of its wires are incorrect (θ will be given
explicitly later).

Let g be a gate in C with inputs x1, . . . , xf , and output z. The circuit corre-
sponding to g consists of two levels of gates. The first level consists of m copies of g,
with the ith copy taking as input the ith wire from each of the f input cables. The
second level of the circuit consists of m majority gates, each of which has m inputs,
one from each of the copies of g. The outputs of these gates form the output cable
for the circuit. Figure 1 shows the construction with f = 4 and m = 6.

Suppose that we damage each gate in C ′ independently with probability ε, where
1/4(f + 1) ≤ ε < 1/2(f + 1). We will analyze the probability that the output cable
of a circuit corresponding to a gate is incorrect, assuming that its input cables are
correct. Consider a circuit in C ′ corresponding to gate g in C. Since its input cables
are correct, at most fθm of the copies of g will be incorrect due to receiving a faulty
input. In the worst case, it will take only a further (0.5− fθ)m faults in the copies of
g to make at least half of them incorrect. Therefore, the probability that more than
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Figure 1: The reliable subcircuit corresponding to g.
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half of the copies of g are incorrect is B((0.5− fθ)m, m, ε). The probability that the
output cable is incorrect given that less than half of the first-level gates are incorrect
is B(θm, m, ε). Therefore, the probability that the output cable is incorrect given
that the input cables are correct is B((0.5 − fθ)m, m, ε) + B(θm, m, ε). Therefore,
taking θ = 1/2(f + 1), the probability that the output cable being incorrect given
that the input cables are correct is, by Lemma 3.2, 2B(m/2(f +1), m, ε) ≤ 2e−β2εm/2

where β = 1/2ε(f + 1) − 1, provided 1/4(f + 1) ≤ ε < 1/2(f + 1).
Since there are z cables which may independently fail, and in the worst case the

failure of a cable may result in the failure of the whole circuit, the probability that
the cable representing the output of C is incorrect is bounded above by 2ze−β2εm/2.
This is at most µ when

m =
2

εβ2
(ln z + ln

2

µ
).

Thus the output cable of the new circuit is incorrect with probability at most µ.
The circuit is completed by placing an m-input majority gate on the output cable.
The probability that the output of this gate is incorrect is less than µ + ε. The total
number of gates is 2mz + 1, and the depth is 2d + 1. �

We can draw two conclusions from Theorem 4.1. Suppose we call the value µ−1 ∈ R
the accuracy of the circuit. Firstly, an arbitrary circuit can be made reliable under
malicious faults with a log-linear increase in size. Secondly, accuracy can be increased
to an arbitrary constant with a further increase linear in the original size.

Theorem 4.1 is only interesting when µ + ε ≤ 0.5. Suppose we call a circuit ε-
resilient if it is (µ, ε)-resilient for some µ ∈ R+ such that µ + ε ≤ 0.5. Taking f = 2
and Carver Mead’s example of ε = 0.1, we have:

Corollary 4.2 Every function computed by a threshold circuit of fan-in 2, size z, and

depth d can be computed by a 0.1-resilient threshold circuit of size 63z log z +145z +1

and depth 2d + 1.

If ε ≤ 1/12, our construction becomes even more practical.

Corollary 4.3 Every function computed by a threshold circuit of fan-in 2, size z, and

depth d can be computed by an ε-resilient threshold circuit of size 48z log z + 76z + 1

and depth 2d + 1, where ε ≤ 1/12.

Unfortunately, the general construction of Theorem 4.1 can only be used for Carver
Mead’s test case of ε = 1/10 provided f ≤ 4.

6



5 Summation Networks

The obvious way to implement a threshold gate in VLSI is to partition the gate into
two independent parts, one that selects and sums the weights, and one that performs
the thresholding operation. (Actually, we will see that only the former is necessary).
If we intend to implement discrete neural networks in a VLSI-based or related tech-
nology, it makes sense to analyze a theoretical model which more accurately reflects
this partitioning. One can also observe the same kind of partitioning in biological
neurons. The summation of current is performed at the dendrite branches and soma,
and the thresholding is performed at the axon hillock.

A summation function f :Bn→Bn log n is defined by a set of weights w1, . . . , wn ∈ N
as follows: f(x1, . . . , xn) is the two’s complement representation of

n∑

i=1

wixi.

That is, f(x1, . . . , xn) = (y1, . . . , ym), where
m∑

i=2

2m−iyi − 2m−1y1 =
n∑

i=1

wixi.

Note that y1 is a sign bit in the sense that
∑n

i=1 wixi ≥ 0 iff y1 = 0. A summation
gate is a device which computes a summation function.

A summation circuit is the analog of a threshold circuit using summation gates
instead of threshold gates. The following two results show that summation circuits
are closely related to threshold circuits. We will assume for the remainder of the
paper that the output of the summation circuit is a single bit (that is, the other
outputs are discarded).

Theorem 5.1 For every threshold circuit of size z and depth d there exists a sum-

mation circuit of size z and depth d which computes the same function.

Proof: Without loss of generality, we can assume that each threshold gate has a
threshold value of zero (see, for example, Parberry [9]). Each threshold gate in the
original circuit can then be replaced by a summation gate in the obvious fashion by
discarding all of the outputs of the summation gate except for the sign bit. �

Theorem 5.2 For every summation circuit of size z and depth d there exists a thresh-

old circuit of size z3 log2 z and depth 3d that computes the same function.

Proof: Hofmeister, Hohberg, and Köhling [7] have shown that n integers of at most
n bits can be added in depth 3 and size O(n2). Therefore, every addition gate in the
original circuit can be replaced by a threshold circuit of O((z log z)2) gates and depth
3. �
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6 Reliable Summation Circuits

Define the multi-majority function M :Bfm→Bf as follows. M has fm inputs, divided
into f groups of m. There are f outputs, each of which is the majority of a group of
m inputs. More formally,

M(x11, x12, . . . , x1m, x21, x22, . . . , x2m, . . . , xf1, xf2, . . . , xfm) = (y1, y2, . . . , yf)

where for 1 ≤ i ≤ f , yi = 1 iff
m∑

j=1

xij ≥ m/2.

Lemma 6.1 The multi-majority function can be computed by a summation gate.

Proof: Without loss of generality, assume m is one less than a power of two.
Suppose m = 2r − 1 for some r ∈ N. Then

M(x11, x12, . . . , x1m, x21, x22, . . . , x2m, . . . , xf1, xf2, . . . , xfm)

is computed with a summation gate as follows (see Figure 2). The weights used in
the summation gate are

w11, w12, . . . , w1m, w21, w22, . . . , w2m, . . . , wf1, wf2, . . . , wfm

where for 1 ≤ i ≤ f , 1 ≤ j ≤ m, wij = mf−i+1. The summation gate with these
weights has fr + 1 outputs (the extra one is the sign bit)

y0, y11, y12, . . . , y1r, y21, y22, . . . , y2r, . . . yf1, yf2, . . . , yfr

where

M(x11, x12, . . . , x1m, x21, x22, . . . , x2m, . . . , xf1, xf2, . . . , xfm) = (y11, y21, . . . , yf1).

�

Theorem 6.2 Every function computed by a summation circuit of size z and depth

d can be computed by a (µ, ε)-resilient summation circuit with size

2z

εβ2
(ln z + ln

2

µ
) + 1

and depth 2d + 1, for all 1/8 ≤ ε < 1/2 and µ > 0, where β = 1/4ε − 1.
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Figure 2: A multi-majority gate.

Proof: The proof is similar to that of Theorem 4.1. As before, each wire in the
original circuit is replaced by a cable of m wires. A cable is said to be correct if at
least m/2 of its wires are correct. Each summation gate g of fan-in f with weights
w1, . . . , wf in the original circuit is replaced by m copies of a two-gate circuit which
consists of a multimajority gate whose output is fed into a copy of g, as shown in
Figure 3. The probability that an output cable of this circuit is incorrect, given that
the f input cables are correct is B(m/2, m, 2ε). By Lemma 3.2, B(m/2, m, 2ε) ≤
e−β2εm/2, where β = 1/4ε − 1. Using an analysis similar to that used in the proof of
Theorem 4.1, the new circuit is (µ, ε)-resilient if we take

m =
1

εβ2
(ln z + ln

2

µ
).

�

Returning to our example of ε = 1/10, we have:

Corollary 6.3 Every function computed by a summation circuit of size z, and depth

d can be computed by an ε-resilient summation circuit of size 6z log z + 14z + 1 and

depth 2d + 1, for all ε ≤ 1/8.
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Figure 3: The reliable circuit corresponding to g.
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7 Open Problems

The problem of whether an analog of Theorem 6.2 holds for unbounded fan-in thresh-
old circuits is still open. One weakness of Theorem 6.2 is that it uses large weights.
However, the weights are bounded above by 2O(z log log z) in a circuit of size z, which
is certainly better than the best known upper bound on the weights in such a cir-
cuit, 2O(z log z) (Muroga, Toda, and Takasu [8]). The problem of fault-tolerance in
summation circuits with small weights is still open.

References

[1] D. Angluin and L. Valiant. Fast probabilistic algorithms for Hamiltonian circuits
and matchings. In Proceedings of the Ninth Annual ACM Symposium on Theory
of Computing. ACM Press, 1977.

[2] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

[3] R. L. Dobrushin and S. I. Ortyukov. Upper bounds for the redundancy of self-
correcting arrangements of unreliable functional elements. Problems of Informa-
tion Transmission, 13:203–218, 1977.

[4] T. Feder. Reliable computation by networks in the presence of noise. IEEE
Transactions on Information Theory, 35(3):569–572, 1989.

[5] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits
of bounded depth. In 28th Annual Symposium on Foundations of Computer
Science, pages 99–110. IEEE Computer Society Press, 1987.

[6] T. A. Heppenheimer. Nerves of silicon. Discover, 9(2):70–79, February 1988.

[7] T. Hofmeister, W. Hohberg, and S. Köhling. Some notes on threshold circuits
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