
Information Processing Letters 22 (1986) 285-289
North-Holland

30 May 1986

ON RECURRENT AND RECURSIVE INTERCONNECTION PATTERNS

Ian PARBERRY

Department of Computer Science, College of Science, The Pennsylvania State University,

333 Whitmore Luboratov, University Park, PA 16802, U.S.A.

Communicated by David Gries
Received 5 April 1985
Revised 12 August 1985

A number of trivalent graphs, in particular variants of the cube-connected cycles and shuffle-exchange, have become popular
as interconnection patterns for synchronous parallel computers. We consider highly-structured interconnection patterns that
allow large parallel machines to be constructed from isomorphic copies of smaller ones, plus (perhaps) a few extra processors.
If only a small number of extra processors are added, we call the interconnection pattern recurrent. If no extra processors are
added, we call it recursive. We show that a constant-degree recursive interconnection pattern is, in a sense, not as versatile as
the cube-connected cycles or shuffle-exchange, and we present a trivalent recurrent interconnection pattern that is.

Keywords: Parallel computation, interconnection pattern, composite algorithm, cube-connected cycles

1. Introduction

An interconnection pattern is an infinite series
G = (G,, G,, G,, . . .) of finite graphs. Graph G,
represents a parallel machine, each vertex a
processor, and each edge a communication link
between processors. The processor bound P(n) is
the number of vertices in G, .as a function of n.
For an interconnection pattern to be of any practi-
cal use, the following properties must hold:

(1) The degree of G, is constant (i.e., indepen-
dent of n).

(2) G, is easy to compute (as a function of n).
(3) There is a constant c > 0 such that, for all

n 2 1, P(n) < c P(n - 1).
The literature already provides us with useful

interconnection patterns. Preparata and Vuillemin
[5] studied a useful class of algorithms (which they
call composite algorithms) for the multi-dimen-
sional cube. Although this interconnection pattern
has nonconstant degree, they presented a practical
interconnection pattern, called the cube-connected
cycles, which has the ability to simulate composite

algorithms without asymptotic time loss. We call a
practical interconnection pattern with this prop-
erty composite. The shuffle-exchange interconnec-
tion pattern [7] is also easily seen to be composite.
There are efficient composite algorithms for many
useful data routing problems (such as sorting and
performing permutations), which can thus effi-
ciently be implemented on either the cube-con-
nected cycles or shuffle-exchange.

Loosely speaking, an interconnection pattern is
said to be recurrent if each graph G, is made up
of many isomorphic copies of smaller graphs G,
where m -C n. Both the cube-connected cycles and
shuffle-exchange are composite, but neither is re-
current. Meyer auf der Heide [2,3] has given a
degree-4 interconnection pattern that is both com-
posite and recurrent. We present a degree-3 inter-
connection pattern with the same properties. Each
G, is made up of at least P(n)/(2P(m)) copies of
G,. Also, we find that it is impossible to design a
composite interconnection pattern with the prop-
erty that each G, is made up of exactly P(n)/P(m)
copies of G,. We call an interconnection pattern

0020-0190/86/$3.50 0 1986, Elsevier Science Publishers B.V. (North-Holland) 285

Volume 22, Number 6 INFORMATION PROCESSING LE’ITERS 30 May 1986

with the latter property recursive. is counted twice, so S, = 2E,.)
The main body of this paper is divided into two

sections. In Section 2 we demonstrate that no
recursive interconnection pattern can permute n
items in O(log n) time, a task that is well within
the abilities of a composite interconnection pat-
tern. In Section 3 we give a composite recurrent
interconnection pattern, which we call the cube-
connected lines. A preliminary version of the re-
sults of this paper has appeared in [4].

2. Recursive interconnection patterns

We claim that, for n >, 1, Ek = Q(c”/n). Con-
sider one of the subgraphs of G, isomorphic to
G,_,. Pick a permutation that takes a data item
from each vertex of the subgraph (there are c” -I
of them) to a vertex of G, outside that subgraph.
These data items must pass along the edges of GA,
since these are the only edges linking the subgraph
with the rest of G,. Thus, in one step at most E’”
items can be moved. By hypothesis we can move
all the items in O(n) steps. There are en-i items to
be moved. Hence, C” = O(E’,n). This is sufficient
to prove the above claim.

Therefore.
An interconnection pattern G = (G,, Gi,. . .)

with P(n) processors is said to be recurrent if, for
all n,m with 0 d m 4 n, G, has Q(P(n)/(P(m))
disjoint subgraphs isomorphic to G,. The simplest
form of recurrence one might choose is to have G,
constructed from precisely P(n)/P(m) such sub-
graphs. Unfortunately, this type of recurrent inter-
connection pattern is much less powerful than the
shuffle-exchange [7] or cube-connected cycles [5]
interconnection patterns.

E,=E;+cE,_,

n-l

= c ci E’_.
” I

i=l

/(n - i) (by the claim)

Suppose c is a fixed positive integer (indepen-
dent of n). More precisely, a recursive intercon-
nection pattern is one in which G, (n > 0) is made
up of exactly c disjoint copies of G,_, (with some
fixed graph for G,), joined by extra edges from
some graph GA.

Thus,

rn = EJP, =Q

Theorem 2.1. A constant degree recursive parallel
machine with P(n) processors cannot permute P(n)
items in O(log P(n)) steps.

which diverges as n -+ co. But this contradicts the
fact that P,, < id, a constant independent of n.
Thus, no such parallel machine can exist. •I

Proof. For a contradiction, suppose G =

(G,, G,, -. . > is a P(n)-processor, degree-d recur-
sive interconnection pattern that can be used to
permute P(n) items in O(log P(n)) time. The fol-
lowing simple and elegant technique is due to
Meertens [I].

This is in contrast to the corresponding result
for the cube-connected cycles (see [5]) and
shuffle-exchange (see [4]).

3. A recurrent interconnection pattern

Without loss of generality assume P(0) = 1 (note
that this means P(n) = c”). For convenience, write
P,, for P(n). Let E, denote the number of edges in
G,, E:, denote the number of edges in GA, and
I, = EJP,. Note that F,, < id. (Let S, be the sum
over all vertices v in G, of the number of edges
incident with v. Clearly, S, < d P,. But every edge

First, let us introduce some useful notation.
Suppose v and i are nonnegative integers. If i 2 1,
then let Vi denote the ith least-significant bit in
the binary representation of v, that is, vi
= [v/2”-“1 mod 2. Where convenient, we may
confuse the integer v and a binary representation
vkv,-I... v1 (where k 2 [log v] + 1) of v. Also, let
v@ denote the integer that differs from v precisely

286

(by re-indexing) .

Volume 22, Number 6 INFORMATION PROCESSING LETTERS 30 May 1986

in the ith (least-significant) bit, that is, vci) = v +
(- 1)“#2(i - 1).

The cube-connected cycles CCC, of Preparata
and Vuillemin [5] is defined as follows. Let r be
such that 2’-’ +r-l<k<2’+r. CCC, has
vertex-set

and each vertex (v, p) is joined to the following
vertices:

(i) (vtp+i), p), provided 0 G p < k - r,
(ii) (v, (p + 1) mod 2’) and

(iii) (v, (p - 1) mod 2’).
The first link is called a cube edge, the remaining
two, cycle edges. CCC, has 2k vertices and has
degree 3.

The following is a recurrent interconnection
pattern that is as powerful as the cube-connected
cycles, at least in its ability to simulate composite
algorithms. The cube-connected lines, CCL, (see
Fig. 1) is simply a copy of CCC, with the edges
from vertices (v, 0) to (v, 2’ - l), 0 6 v < 2k-’ de-
leted (we call the remaining cycle edges line edges,
and the deleted cycle edges external edges). That
is, the cycles of the cube-connected cycles are
broken, and thus become lines. CCL, has 2k
vertices and has degree 3.

It is fairly easy to see that CCL, is recurrent.
We need to differentiate the special case of CCL,
when k is of the form 2’ + r, for some r. In this
case we call CCL, a fuZl cube-connected lines
graph.

CCL,

ro.0, (LOI
. .

CCL2

(0.01 (1.0)

I I to,1r rt,u

(3.2)

Y
(3.3) 4

Fig. 1. The 2, 4, 8, 16, and 32 vertex cube-connected lines graphs, CCL, through CCL,. Line-edges are drawn vertically; the
remainder are cube-edges.

287

Volume 22. Number 6 INFORMATION PROCESSING LETTERS 30 May 1986

Fig. 2. CCL, has one subgraph isomorphic to CCL,.

Lemma 3.1. If k = 2’ + r, then CCLL+r has ex-
actly one subgraph isomorphic to CCL,.

Proof. Suppose k = 2’ + r. CCL, has vertices (v, p)
with O<V<~~-‘, O<p<2’. Vertex (v,p) is
joined to the following vertices:

(i) (vcp+ l), p), 0 < v < 2k-r, 0 <p < 2’,
(ii) (v, p + l), 0 G v < 2k-r, 0 < p < 2’ - 1, and

(iii) (v, p - l), 0 < v < 2k-r, 0 < p < 2’.

ccLk+l has vertices (v, p) with 0 G v < 2k-r, 0 <
p < 2’+r. Vertex (v, p) is joined to the following
vertices:

(i) (vcp+l), p), 0 < v < 2k-r, 0 < p < 2’,
(ii) (v, p + l), 0 < v < 2k-r, 0 < p < 2’+r - 1,

and

Proof. Without loss of generality, suppose k < 2’
+ r. CCL, has vertices (v, p) with 0 d v< 2k-r,
0 G p < 2’. Vertex (v, p) is joined to the following
vertices:

(i) (vcp + I), p),O~v<2~-‘,O<p<k-r,
(ii) (v, p + l), 0 G v < 2k-r, 0 < p < 2’ - 1, and

(iii) (v, p - l), 0 < v < 2k-r, 0 < p < 2’.

ccLk+, has vertices (v, p) with 0 <v < 2k-r+‘,
0 G p < 2’. Vertex (v, p) is joined to the following
vertices:

(i) (vcp+ l), p), OGV<~~-~+‘, O<p<k-r

+ 1,
(ii) (v, p + l), 0 < v < 2k-r+1, 0 < p < 2’ - 1,

and
(iii) (v, p - l), 0 < v < 2k-r+1, 0 < p < 2’.

Thus, deleting the cube-edges from (v, p) to

(v (p+l) p) with p = k - r from CCL, + I gives tW0
disjoin; graphs isomorphic to CCL, (see Fig. 3).
0

(iii) (v, p - l), 0 < v < 2k-r, 0 < p < 2’+r. Lemma 3.3. If k = 2’+ r and j = 2’+ s, where
Thus, CCL, looks exactly like CCL,_ r with lines r > s, then CCL, has exactly 2k-j disjoint sub-
extended to double the length using vertices graphs isomorphic to CCL,.

Fig. 3. CCL, has two subgraphs isomorphic to CCL,.

288

without cube links (see Fig. 2). So, CCL,+, has
CXaCtly one subgraph isomorphic to CCL,. 0

Lemma 3.2. If k is not of the form 2’ + r, then

ccLk+l has two disjoint subgraphs isomorphic to
CCL,.

CCL, ra

Volume 22, Number 6 INFORMATION PROCESSING LETTERS 30 May 1986

Fig. 4. CCL, has four subgraphs isomorphic to CCL,.

Proof. Suppose k = 2’ + r and j = 2” + s for some
r 2 s 2 0. CCL, has vertices (v, p), 0 < v < 22s, 0 <
p < 2”. Vertex (v, p) is joined to the following
vertices:

(i) (vfp+l), p), 0 < v < 22s, 0 < p < 2”,
(ii) (v, p + l), 0 < v < 22s, 0 G p < 2” - 1, and

(iii) (v, p - l), 0 < v < 22s, 0 < p < 2”.
CCL, has vertices (v, p), 0 < v < 22’, 0 G p < 2’.
Vertex (v, p) is joined to the following vertices:

(i) (vtp+l), p), 0 < v < 22’, 0 < p < 2’,
(ii) (v, p + l), 0 < v < 22r, 0 < p < 2’ - 1, and

(iii) (v, p - l), 0 < v < 22r, 0 < p < 2’.
Deleting the line-edges between vertices (v, i 2’ -
1) and (v, i 2’) for 0 < v < 22r, 0 < i < 2’-‘, breaks
CCL, into 2k-j graphs isomorphic to CCL, (see
Fig. 4). Thus, a full CCL, has 2k-’ disjoint sub-
graphs isomorphic to a full CCL,. 0

Theorem 3.4. For 0 < j < k, CCL, has at least
2k-j- ’ disjoint subgraphs isomorphic to CCL,.

Proof (Sketch). The result easily follows using the
above lemmas. First, reduce CCL, into subgraphs
isomorphic to the next smaller full CCL, using
Lemmas 3.1 and 3.2. If CCL, is encountered along
the way, then this is sufficient. Next, using Lemma
3.3, reduce the full CCL immediately below CCL,
into subgraphs isomorphic to the full CCL im-
mediately above CCL,. The latter can be reduced
to CCL, by application of Lemma 3.2.

In this entire process we only once have to
reduce a nonfull CCL to subgraphs isomorphic to
full ones. Thus, CCL, consists of 2k-j-1 sub-
graphs isomorphic to CCL,. •I

Note that any attempt to increase the number
of subgraphs from 2k-j-1 to 2k-’ is doomed to
failure. For if CCL, had 2k-j subgraphs isomor-
phic to CCL,, it would then be recursive. Thus, by

Theorem 2.1 it would be much weaker than the
cube-connected cycles for computing permuta-
tions. However, we have the following theorem.

Theorem 3.5. A cube-connected lines with 2”
processors can simulate a 2k processor composite
algorithm without asymptotic time loss.

Proof. The proof is almost identical to that for the
cube-connected cycles [5]. In that proof:

(1) The pipelining phase utilizes a synchronous
cyclic shift around the cycles. This can be replaced
with a linear shift along the corresponding lines of
the cube-connected lines graph, with wrap-around
at the ends (at most doubling the time require-
ment).

(2) Communication within the cycles is per-
formed using a procedure called LOOPOPER. A

close examination of this procedure reveals that it
never uses external edges, and thus can be ex-
ecuted on the cube-connected lines graph. •1

Thus, in particular, a parallel machine based on
the cube-connected lines interconnection pattern
can permute n items in O(log n) time.

Reif and Valiant [6] have independently dis-
covered a graph that is similar to the cube-
connected lines.

References

PI

PI

131

[41

151

Fl

171

L. Meertens, Recurrent ultracomputers are not (log n)-fast,
Tech. Rept. IW118/79, Dept. of Computer Science, Centre
for Mathematics and Computer Science, 1979.
F. Meyer auf der Heide, Efficiency of universal parallel
computers, Acta Inform. 19 (1983) 269-296.
F. Meyer auf der Heide, Infinite cube-connected cycles,
Inform. Process. Lett. 16 (1983) l-2.
I. Parberry, A complexity theory of parallel computation,
Ph. D. Thesis, Dept. of Computer Science, Univ. of
Warwick, 1984.
F.P. Preparata and J. Vuillemin, The cube-connected cycles:
A versatile network for parallel computation, Comm. ACM
24 (5) (1981) 300-309.
J. Reif and L. Valiant, A logarithmic time sort for linear
size networks, Proc. 15th Ann. ACM Symp. on Theory of
Computing, Boston, MA (1983) 10-16.
H.S. Stone, Parallel processing with the perfect shuffle,
IEEE Trans. Comput. C-20 (2) (1971) 153-161.

289

