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Abstract

For maximum efficiency in a multiprocessor system the load should be shared evenly over all
processors, that is, there should be no idle processors when tasks are available. The delay in a
load sharing algorithm is the larger of the maximum time that any processor can be idle before
a task is assigned to it, and the maximum time that it must wait to be relieved of an excess task.
A simple parallel priority queue architecture for load sharing in a p-processor multiprocessor
system is proposed. This architecture uses O(p log(n/p)) special-purpose processors (where n
is the maximal size of the priority queue), an interconnection pattern of bounded degree, and
achieves delay O(log p), which is optimal for any bounded degree system.

1 Introduction

One advantage that multiprocessor computers have over uniprocessors is the ability to speed up
computation by having the processors compute in parallel. The archetypal model studied is the
PRAM, in which it is assumed that concurrent access to a shared memory is possible at instruction-
cycle speeds. The PRAM is attractive since it is relatively easy to program and analyze. Although
there is no obvious direct implementation with current technology, it can easily be implemented
by a bounded-degree network of processors each with a local memory. Such an implementation
requires an increase in running time for a p processor system by a factor of Θ(log p), which can
be achieved using Columnsort [15] and techniques described in Parberry [19]. However, many of
the fastest parallel algorithms (for example, those in NC [8, 22]) require a massive amount of
communication. It is not unusual to require interprocessor communication from distant processors
for almost every local instruction executed. It is unreasonable to expect even Ranade’s algorithm
[26] to provide the interprocessor communication bandwidth that is required by these algorithms.

The world faced by programmers of today’s parallel computers is vastly different from that of the
theoretician. Parallel computers are attractive because they provide a large amount of processing
power at a reasonable cost. However, interprocessor communication is too slow to exhibit the
surprisingly large (often exponential, see Parberry [18, Chapters 5–9]) theoretical parallel speedups
that have been discovered. It is more efficient in practice to use algorithms that do more local
computation than communication. Although it is reasonable to expect the communication speed
to increase as technology is improved, it is also reasonable to expect the number of processors
to increase at the same time. It would perhaps be naive to conjecture the availability in the
immediate future of computers with tens or hundreds of thousands of general-purpose processors
and an instruction-cycle time of 10−8 seconds or less in which general interprocessor communication
can take place as fast as a local instruction.
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Figure 1: The architecture with p = 4 general-purpose processors.

One solution to the problem of slow communication is to increase the granularity of the par-
allelism: instead of taking the basic unit of the computation to be a single instruction, take the
basic unit to be a sequential task at the operating system level. The granularity of this type of
parallelism is large enough to allow complete interprocessor communication while the tasks are
being executed. For maximum efficiency in a multiprocessor system, the load should be shared
evenly over all processors, that is, there should be no idle processors when tasks are available.

We will assume that:

1. The general-purpose processors are both the producers and consumers of the tasks.
2. The duration of the tasks is unknown.
3. Any task may be executed on any general-purpose processor.
4. Each task is to be executed in its entirety on a single general-purpose processor.
5. Each task is assigned a static priority at the time of creation.
6. A processor that creates a task must remain idle until it is relieved of that task.
7. No processor may commence a task if there exist unassigned tasks of higher priority.
8. Interprocessor communication amongst p processors takes time Ω(log p).

One measure of the efficiency of a load sharing algorithm is its throughput, that is, its ability to
schedule an arbitrary set of jobs within the smallest amount of elapsed time. An efficient algorithm
to find the optimal schedule under these conditions is highly unlikely since the problem is NP-
complete (Ullman [29]). There are many papers on the load sharing problem that assume some
probability distribution on the arrival of the tasks, and measure a performance metric designed
to quantify the average throughput of the system (for a survey, see Wang and Morris [30]). We
will instead measure the maximum amount of time that a processor must remain idle at a stretch,
which because of assumption 8 above must be Ω(log p). Our algorithm falls into the global, dy-
namic, physically distributed, cooperative, suboptimal, one-time assignment category of Casavant
and Kuhl [7].

The delay in a load sharing algorithm is the larger of the maximum time that any processor
can be idle before a task is assigned to it and the maximum time that it must wait to be relieved of
a newly created task. We present a multiprocessor architecture that uses a centralized scheduler,
as shown in Figure 1. This scheduler will consist of a tightly-coupled parallel computer with
O(p log(n/p)) simple special-purpose processors (where n is the maximal size of the priority queue)
connected together in a bounded degree network to give O(log p) delay in the worst case (which is
asymptotically optimal for any bounded degree network).

We show that multiprocessor load sharing is reducible to parallel priority queue operations.
A parallel priority queue is a priority queue in which the insert operation inserts p values, and
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the deletemin operation deletes the p smallest values, for some fixed value of p. Load sharing is
achieved by breaking the computation into rounds of time O(log p). At the end of each round each
processor may choose to insert a task into the parallel priority queue, or delete one of the tasks of
highest priority, or continue local processing.

Many PRAM algorithms for standard priority queue operations (i.e. p = 1) can be found in the
literature (for example, Biswas and Brown [6], Munro and Robertson [16], Rao and Kumar [27],
and Jones [13]). Quinn and Yoo [25] describe parallel algorithms for filling and emptying a heap
on a bounded degree network, but their algorithm deadlocks if insert and deletemin operations
are interleaved. Fan and Cheng [11] have parallel priority queue algorithms for a bounded degree
network with O(log p) delay on O(n + p2) processors. Das and Horng [9], and Deo and Prasad [10]
have PRAM algorithms with delay O(log n) on p processors.

We present a new data structure for the priority queue called a ragged heap. Priority queue
operations for the ragged heap can be pipelined in such a manner that O(1) delay can be achieved
on a constant degree network of O(log n) processors. The algorithm is simple to implement and
uses only O(1) memory per processor in addition to the priority queue elements. The spirit of the
algorithm is similar to that of Munro and Robertson [16], but the details are much more complicated
since their algorithm is for a PRAM, which allows instantaneous communication between processors
that hold different parts of the heap.

We describe how to extend our algorithm to the parallel priority queue, giving O(log p) delay
with O(p log(n/p)) processors using the AKS sorting network (Ajtai, Komlós and Szemerédi [1, 2]).
The use of the AKS sorting network unfortunately results in an extremely large constant multiple
(more than 6000, see Paterson [21]) in the delay and processor bounds. If a weaker form of load
sharing is desired, then it is sufficient to use halving networks, which separate the inputs smaller
than the median from those larger than it, instead of sorting networks. It is obvious that the depth
of an n input halving network must be Ω(logn). Alekseyev [4] has shown that the size must be
Ω(n log n) (see also Knuth [14, pp. 234–235]). We demonstrate that halving networks of depth less
than 327 log n exist. This results in a parallel priority queue algorithm with the same asymptotic
time and processor bounds as before, and constant multiples that are smaller by a factor of 18.
Ajtai, Komlós and Szemerédi [3] also have an improved bound on the depth of halving networks.

The main body of this paper is divided into four sections. The first section describes the ragged
heap data structure and the priority queue algorithms. The second section describes the extension
to parallel priority queues. The third section describes the application of parallel priority queues to
load sharing in multiprocessor systems. The fourth section describes a technique for constructing
efficient halving networks. A preliminary version of this paper appears in Parberry [20].

2 Ragged Heaps

We assume that the reader is familiar with the heap implementation of the ADT priority queue
(Williams [31]). The root of a heap is said to be at level 1. The child of a node at level i is said to
be at level i + 1.

A ragged heap is a heap with the following modifications. There are at most O(log n) empty
nodes, termed holes, in the heap. The root cannot be a hole. Each nonroot node can have up
to five different types of messages. As time proceeds, the holes move down the heap (and may
accumulate at the bottom of the heap, giving it a “ragged” appearance), some of the messages
move down the heap, and some move up. Some messages contain heap values, and some are empty.
The five different types of message are shown in Table 1, together with their respective direction
of motion and whether they carry a heap value.

We use log n processors with processor i connected to processor i + 1, for 1 ≤ i < log n (see
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Figure 2: A ragged heap. The white circles are holes, and the black dots are messages.

Message Direction Value Purpose
promote up yes Promote last leaf value to replace hole
bounce up no A failed promote (last leaf was hole)
replace down yes Send inserted value to chase hole
fetch down no Send for last leaf to replace hole
purge down no Purge top bit of hole routing stacks

Table 1: Ragged heap messages.
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Figure 3: The interconnection pattern for a parallel heap.

Insertions and
Deletemins

Outputs from
Deletemins

Memory Processors

Processor 1

Processor 2

Processor 3

Processor 4

Figure 4: Embedding a 15-node priority queue into the memory of a 4-processor system.
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Figure 5: A more practical embedding. Each numbered area in the heap on the left is stored in
the memory of the processor on the right that bears the corresponding number.

push b insert the bit b onto the top of the stack
pop delete and return the bit on the top of the stack
size return the number of bits in the stack

Table 2: Stack operations.

Figure 3). Processor 1 receives the operations. The value removed during each deletemin operation
is to be output from processor 1 before the processing of the next operation begins. We use one
processor for each level of the heap: processor i stores all of the nodes at level i, for 1 ≤ i ≤ log n
(see Figure 4). In practice one should seek to distribute the priority queue values more equitably
amongst the processors since the scheme we have described stores up to half of the values in a
single processor. However, this can be easily rectified by replacing the last log log n processors
with a complete binary tree of depth log log n, resulting in a constant degree network of less than
2 log n processors, each of which carry O(n/ log n) priority queue values (see Figure 5). We leave
the necessary modifications to our priority queue algorithms as an exercise for the reader.

Each processor has a stack of bits. The operations permitted on this stack are shown in Table 2.
We will suppose that all of the stack operations can be implemented in constant time. This can be
achieved by packing the stack into a constant number of words. We will for the remainder of this
paper assume that each stack occupies a single word of memory. We also assume that the processors
can perform the elementary operations shown in Table 3 in constant time. This instruction-set,
which is quite common on microprocessors, is slightly unusual in the theory community since it
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inc b increment the integer in b by 1
dec b decrement the integer in b by 1
xor a, b bitwise exclusive-or a into b
lsh a, b left shift a by the amount in b, filling with zeros
rsh a, b right shift a by the amount in b
copy a, b copy b into a

Table 3: Elementary operations.

procedure push(b)
inc c
lsh s, 1
xor s, b

procedure pop
dec c
copy t, s
rsh s, 1
lsh s, 1
xor t, s
rsh s, 1
return(t)

procedure size
return(c)

Figure 6: Implementation of the stack operations from Table 2 using the elementary operations
from Table 3
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includes arbitrary-length shifts. The drawbacks and advantages of using shifts are discussed at
greater length in Parberry [18] (see the restricted arithmetic instruction set). The stack operations
can then be implemented in constant time as shown in Figure 6, where s is the stack and c is a
counter (both initially zero).

We will describe our algorithm on a synchronous network, that is, a network with some form of
synchronization between the processors. For descriptive purposes, we assume that this is achieved
explicitly with a global clock. In practice, synchrony can be achieved implicitly using a message-
passing protocol that has a mechanism which allows processors to wait for the arrival of a message
from a specific neighbour (for example, using standard locking protocols such as test-and-set or
compare-and-swap). We also assume that the operations arrive at every odd-numbered clock tick.
In practice this can be implemented by giving processor 1 a clock that runs at least twice as fast
as the maximum data input rate. The other processors need have no concept of global time other
than that provided from processor 1 via the message-passing protocol.

At each clock tick, two phases of computation are performed consecutively. The first phase
is the input phase, in which processor 1 processes the current operation (if one is present). A
deletemin operation is processed as follows. Processor 1 has access to the root of the ragged heap.
It deletes the value at the root, replaces it with a hole, and outputs it immediately. It also creates
a fetch message at the root. An insert operation is processed as follows. The inserted value
becomes a replace message at the root.

The second phase is the maintenance phase, during which all processors perform computation
to update and maintain the ragged heap. The maintenance associated with the holes and messages
is as follows:

The Holes: Every hole in the ragged heap is swapped with its smallest child, unless it is in a leaf
or both of its children are holes. (For the purposes of this comparison, a hole is interpreted
as having a value larger than any element of the heap.) A record is maintained of the path
taken by the hole (so that a value inserted later can catch up with it), as follows. Suppose
the hole is in node i, which is stored in processor pi = �log i� + 1. Processor pi requests the
values v� and vr in nodes 2i and 2i + 1 (respectively) from processor pi + 1, and determines
which is the smaller. If v� < vr, then it passes the hole to node 2i, places v� into node i, and
pushes 0 onto its stack. If vr < v�, then it passes the hole to node 2i + 1, places vr into node
i, and pushes 1 onto its stack. Each hole carries along with it the position of the bit pushed
on the stack (which is the same for all levels). This is called the address of the hole.

The fetch Messages: Each fetch message is passed to the child whose descendants include the
last leaf (which may contain a hole). When it reaches the last leaf, the processor in which the
last leaf is stored does the following. If the last leaf contains a heap element, then it removes
that value from the heap, and places it in an promote message. If the last leaf contains a
hole, then the hole is removed from the heap, and a bounce message is created at that node.
The bounce message is said to represent the hole, and carries with it the hole’s address.

The promote Messages: Each promote message moves one level up the tree. When it reaches
the root, it turns into an insert operation which is processed in the next even-numbered
tick.

The bounce Messages: Each bounce message moves one level up the tree. When it meets a
replace message that is heading for the hole that it represents (which condition it checks
by checking whether the address of its hole is equal to the size of the current stack), the
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Figure 7: Determination of the last leaf (11 in this diagram). The binary representation of 11 is
1011. The last 3 bits, 011, encode the path from the root to a leaf, 0 meaning “left” and 1 meaning
“right”. The processor at a given level can determine the correct bit in O(1) time using shifts.

bounce message takes on the value carried by the replace message, and becomes a a promote
message. The replace message becomes a purge message.

The replace Messages: Each replace message is moved one level down in the tree in pursuit of
the most recent previous hole, if there is one, and towards the next unused node otherwise.
Suppose the replace message v is in node i, which is resident in processor pi = �log i� + 1.
Processor pi compares v to the value vi in node i. If v < vi, then it swaps v with vi. If the
stack in processor pi is not empty, then it sends the replace message after the most recent
previous hole by popping a bit b from its stack, and passing it to node 2i + b. Otherwise, if
the stack in processor pi is empty (in which case the stacks of all its predecessors were empty
when the replace message was there), then it passes the replace message to the child whose
descendants include the next unused node. If the replace message v reaches a node with a
hole in it, then the hole is replaced with the value v, and the replace message is destroyed.
If the replace message v reaches the next unused node, then the value v is placed into that
node (which then becomes the last used node), and the replace message is destroyed.

The purge Messages: Each purge message behaves like the replace message that spawned it
upon collision with a bounce message, except that it carries no value and is destroyed when
it reaches a leaf.

Routing of replace message to the next unused node, and routing of fetch messages to the last
used node is performed using the technique of Gonnet and Munro [12] and Rao and Kumar [27], by
having each processor keep a record of the next unused node, which it updates every time it sees a
replace message when it has an empty stack. The updating can be carried out in constant time
if the processors have arbitrary-length shifts in their instruction sets (as discussed in Section 2).
Suppose the last node is number k. Note that k has �log k� + 1 bits. The least-significant �log k�
bits of k, in most-to-least significant order, encode a path from the root to node number k, with 0
denoting a move to the left child, and 1 a move to the right child (see Figure 7 for an example).
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The formal properties of a ragged heap are as follows:

1. The value stored in each node is no larger than the values in its descendants.
2. The root contains neither a hole, nor a message of any type.
3. A hole is called mobile if at least one of the children of the node that it is stored in does not

contain a hole. There is at most one mobile hole per level.
4. At most 2 log n clock ticks after a hole is created, there will be an insert operation.
5. There is at most one of each type of message per level.
6. Each replace message is no smaller than the heap value that is stored in the same node.

Lemma 2.1 The ragged heap properties 1–6 are preserved by an input phase followed by a main-
tenance phase.

Proof: Suppose we have a ragged heap that has properties 1–6, and perform an input phase
followed by a maintenance phase. We will check the status of each of the properties in turn:
Property 1. The input phase does not affect the property that the value in each node is no larger
than the values in its children. The motion of a hole causes its smallest child to be promoted, which
(as in the standard heap deletemin algorithm) does not affect Property 1. As a replace message
moves down the tree in pursuit of a hole, it will be found in a situation where it is in a node x,
and (by Property 6), it carries a value that is no smaller than the value in the parent of x. In the
maintenance phase, its value is compared to the value of x, and exchanged if it is smaller. Thus
the value in x is replaced by a value that is smaller (and thus is smaller than its children), yet is
larger than the value in its parent. Hence, Property 1 is maintained.
Property 2. The input phase may create a hole and/or downward moving message at the root,
but in each case the maintenance phase either moves it down one level in the tree or deletes it.
Any message moved upward into the root in the maintenance phase is also destroyed during that
phase.
Property 3: Initially, there is at most one mobile hole per level (by Property 3). After the input
phase there is still at most one mobile hole per level (by Property 2). Since in the maintenance
phase each mobile hole moves one level down, the property that there is at most one mobile hole
per level is preserved.
Property 4: After the creation of a hole, it takes at most log n clock ticks for the fetch message
to reach the last level of the ragged heap. It takes at most log n clock ticks for the resulting upward
moving message to reach the root. If it is a bounce message, then it is guaranteed (by Property 4)
to meet a replace message that is bound for the hole that it represents. Thus it is guaranteed to
be a promote message by the time it reaches the root and becomes an insert operation. Therefore,
a new hole is followed by an insert operation at most 2 log n clock ticks later.
Property 5: The argument for Property 5 is similar to that for Property 3. The only difficulty
is with the upward moving messages, since the removal of the last node in the last level may
cause difficulties. No upward moving messages are created during the input phase. During the
maintenance phase, a single upward moving message may be created at the last node. There
will not be another upward moving messages at this level since they are created in response to
deletemin operations, which arrive only at every alternate clock tick. Hence, since upward moving
messages are moved one level up in each maintenance phase, Property 5 is maintained.
Property 6: During the maintenance phase, if the value in a newly-arrived replace message is
smaller than the heap value that is stored in its node, then the two are swapped. Hence, Property 6
is maintained. ✷
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Theorem 2.2 A ragged heap has properties 1–6 throughout its existence.

Proof: The proof is by induction on the number of clock ticks. The claim is vacuously true for
the empty ragged heap. At each clock tick, Lemma 2.1 ensures that the properties are maintained.
✷

Corollary 2.3 A deletemin operation returns the smallest value in the ragged heap.

Proof: The values in the ragged heap are distributed amongst the nodes, the promote messages,
and the replacemessages. By Property 1, the root contains a value no larger than any of the nodes.
By Property 6, the replace messages are no smaller than the root. By Property 1, every promote
message carries a value no smaller than the value in its node. Hence, a deletemin operation outputs
the smallest value in the ragged heap. ✷

Corollary 2.4 The ragged heap algorithm has delay O(1) and uses only O(1) words of word-size
O(log n) per processor in addition to the heap elements.

Proof: The constant delay-bound follows immediately from Properties 3 and 5. The number of
words per processor is O(1), by inspection. The word-size is clearly O(log n) except for the stack.
By Property 4, at most 3 log n clock ticks after a hole is created, a hole will be destroyed (the extra
log n clock ticks is the time it takes the replace message created by the insertion to reach a hole).
Therefore, since a hole is created at most on every alternate clock tick, there are at most 1.5 log n
holes in the ragged heap at any one time, and the stacks therefore require only a single word of
1.5 log n bits each. ✷

3 Parallel Priority Queues

The purpose of this section is to apply the ragged heap to support a parallel priority queue. It
begins by extending the traditional heap to support multiple operations. A parallel priority queue
is a priority queue in which the insert operation inserts p values, and the deletemin operation
deletes the p smallest values in the priority queue and returns them in no particular order. Parallel
priority queues have applications in multiprocessor scheduling, and in parallel graph algorithms
(see, for example, Quinn and Deo [24]). A parallel heap is a data structure with the same tree
structure as a heap, but with p values per node. It also has the property that all of the values in
a node are smaller than the values in its children, and all of the values in one sibling are smaller
than the values in the other.

Sequential algorithms for parallel heaps are fairly straightforward: An insert operation is
processed by first placing the p new items in the next unused node d, which we will call dirty.
Combine the values in d and its parent r and place the smallest p values into r, and the largest p
values into d. Combine the values in d and its sibling (if it has one), and place the largest p values
into the sibling that had the largest value between them, and the smallest p values into the other
sibling. Node r then becomes the dirty node, which is processed in a similar fashion. For example,
see Figure 9 which shows an insertion into a 4-node parallel heap with p = 4.

The correctness of the parallel heap insert procedure is easily verified. Each non-dirty node
contains values which are all smaller than the values in its parent, all larger than the values in
its children, and either all smaller or all larger than the values in its sibling (if one exists). The
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Figure 8: A parallel heap with p = 4 values per node. Note that the values in each node are not
ordered.

dirty node has values which are smaller than its children. Combining the dirty node d with its
parent r may spoil the relationship that r has with its parents and sibling; thus it becomes dirty.
Node d may obtain new values from its parent r, which are necessarily smaller than the values of
its children, and so d still has values smaller than its children at this point. Combining d with its
sibling s has the following effect. Let c2 be whichever one of d and s has the largest element of
the two, and c1 be the other sibling. Note that before the combination, both c1 and c2 have values
smaller than their respective children. Then, c1 will get the p smallest elements, and c2 the p largest
elements of the combined siblings. This establishes the sibling relationship, and does not spoil the
relationship of the siblings with their parent, but may spoil the relationships of the siblings with
their children. Since c1 has possibly obtained smaller values from its sibling, these values are still
smaller than the values in its children. Now, c2 may have obtained larger values from its sibling,
but its largest value is still the same. Therefore, its values are all still smaller than its children.

A deletemin operation is processed by removing the values from the root, and replacing them
with the values from the last used node. Call the root dirty. Let d be the dirty node. Combine
the values in d with those of its smallest child s, and place the smallest p values into d and the
largest p values into s. Combine the values in d and its sibling (if it has one), and place the largest
p values into the sibling that had the largest value between them, and the smallest p values into
the other sibling. Node s then becomes the dirty node, which is processed in a similar fashion. The
correctness of this procedure is easily established in a manner similar to the way the correctness of
the insert procedure was established above.

If the values in each node are sorted, then nodes can be combined by merging them. This
gives rise to a sequential algorithm for parallel priority queues with delay O(p log(n/p)), which is
best when p = 1, and a PRAM algorithm with delay O(log p log(n/p)) using p processors. Our
ragged heap algorithms can be extended to parallel priority queue algorithms in a similar fashion.
Processor 1 is replaced by a constant degree network of O(p) processors that sort using the AKS
sorting network and Leighton’s Columnsort [15]. Every other processor is replaced by a constant
degree network of p processors (such as the shuffle-exchange [28] or cube-connected cycles [23]) which
implement Batcher’s odd-even merging algorithm (Batcher [5]). This gives a delay of O(log p) on
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Figure 10: Detail of the scheduler with p = 4 general-purpose processors.

a constant degree network of O(p log(n/p)) processors.

4 Load Sharing

Parallel priority queues can be used for load sharing as follows. Tasks are stored in the parallel
priority queue with their priority values as the key field, with lower value meaning higher priority.
Every O(log p) steps the general-purpose processors have an opportunity to access the parallel
priority queue. Each of these periods is called a round. At each round, a processor may choose to
insert a task, delete a task or do nothing.

The multiprocessor architecture is as follows (see Figure 10). We use p general-purpose proces-
sors that may create and execute tasks of varying priority. These tasks are stored in a parallel pri-
ority queue as described in Section 3. Access to the parallel priority is via 2p simple special-purpose
processors called interface processors, which handle the communication between the general-purpose
processors and the parallel priority queue, and ensure that the parallel priority queue operations
used in each round are legal despite the fact that some processors may insert, some delete, and
others not participate at all in the current round. The interface processors are connected using an
interconnection pattern capable of optimally executing ASCEND and DESCEND algorithms (see
Preparata and Vuillemin [23]) such as the cube-connected cycles or shuffle-exchange. We use 2p
interface processors for the purposes of description only; p special-purpose processors will suffice
(using standard techniques described in Parberry [18, Section 7.4]).

Each round is broken up into an insert phase and a deletemin phase. In the former, those
general-purpose processors that have a job to insert into the parallel priority queue send it to
its interface processor. In the latter phase, those general-purpose processors that are idle send a
request to their interface processors. In the insert phase the interface processors then:

1. Concentrate the new tasks and those that were left over from previous rounds, that is, route
them to the leftmost interface processors in Figure 10.
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2. If there are at least p tasks, initiate an insert operation in the parallel priority queue using
the leftmost p tasks.

3. Concentrate the leftover tasks at the rightmost processors.

In the deletemin phase the interface processors then:

1. Concentrate the task requests (suppose that there are r ≤ p of them).
2. Initiate a deletemin operation in the parallel priority queue.
3. Merge the tasks deleted from the parallel priority queue with the leftover tasks from the

insert phase.
4. The first r interface processors (those that have a task request) route their tasks back to the

initiating interface processor by reversing the Concentrate operation from step 1, and pass
them to the general-purpose processors that requested them.

5. Concentrate the remaining tasks to the rightmost interface processors.
6. Reinsert the remaining tasks with another insert phase.

It can be proved that if g general-purpose processors require tasks, then they get the g available
tasks of highest priority. Steps 1 and 3 of the insert phase, and steps 1, 4, and 5 of the deletemin
phase can be implemented in O(log p) time using the Concentrate procedure from Nassimi and
Sahni [17] (using standard techniques to implement it on a bounded degree network described in
Parberry [18, Section 7.1]). Step 2 of the insert phase can be implemented in time O(log p) using
standard techniques (see, for example, Parberry [18, Section 7.3]) and the parallel priority queue
insert algorithm from Section 3. Step 2 of the deletemin phase takes O(log p) time using the
parallel priority queue deletemin algorithm from Section 3. Step 3 of the deletemin phase takes
O(log p) time using Batcher’s odd-even merging algorithm (Batcher [5]). Therefore, the delay of
our algorithm is O(log p).

5 Halving Networks

One problem with the approach that we have used so far is that the constant multiple in the depth
of the AKS sorting network is very large (currently more than 6000, according to Paterson [21]).
It is widely conjectured that the size of the constant is due to the extreme difficulty of analyzing
the AKS sorting network, rather than being an intrinsic property of the algorithm. Regardless of
whether this is so, it is apparent that we can save time by not sorting the values in the nodes.
Nodes can be combined directly by a halving network, which may be constructed using AKS-type
techniques, but at much smaller cost in depth. Since a halver must be placed at every level of the
ragged parallel heap, the processor bound rises to O(p log p log n). However, since a comparator
can be easily pipelined, it is sufficient to use only one halver for every O(log p) levels, reducing the
processor requirement to O(p log n). This is sufficient if we weaken our load sharing requirements
(Assumption 7 of Section 1) to allow an idle processor to be assigned one of the p tasks of highest
priority, instead of requiring that in each round, if there are g idle processors, then they must
collectively receive the g available tasks of highest priority.

A halving network is a comparator network with 2n inputs which has the property that the
smallest n inputs appear on the n leftmost outputs (and symmetrically, the largest n inputs appear
on the rightmost n outputs), in no particular order. It is obvious that the depth of an n input
halving network must be Ω(logn) (consider an input which consists of the values 1 through 2n,
in which the ith value is i for 1 ≤ i ≤ n − 1, and the median value n is the jth value for some
n + 1 ≤ j ≤ 2n). Alekseyev [4] has shown that the size must be Ω(n log n), which is interesting in
the light of the observation that the decision tree lower bound is only 2n − o(n).
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It is clear that halving networks of asymptotically optimal depth and size exist, since a sorting
network is also a halving network (see also Ajtai, Komlós and Szemerédi [3]), Paterson [21] has an
improved version of the AKS sorting network with depth 6070 log n. His algorithm can be used to
construct shallower halving networks by stopping as soon as the root bag becomes empty. This,
with Paterson’s best choice of parameters, leads to halving networks of depth less than 1869 log n.
A significant improvement can be gained by further careful modifications, as follows. We assume
that the reader is familiar with the terminology, notation, and techniques of Paterson [21]. Since a
full description and analysis of the algorithm would take many pages, and much of it would be very
similar to [21], we will limit ourselves to describing the principal changes that need to be made.

There is no longer any need for the complete binary tree of bags used by Paterson. All nonroot
bags need only have a single child. As before, the root bag γ-halves its values and passes the
“smaller” half to its left child, and “larger” half to its right child. Each nonroot bag ε-nearsorts
its values, and passes a λ fraction of them to its parent, the remainder to its child. Descendants of
the left child of the root pass their “largest” values up, whilst descendants of the right child pass
their “smallest” values up.

Let V (k, t) = Ak−1νtn denote the capacity of a level k bag at time t. At time t, the root receives
λV (2, t − 1) values from each child. Therefore, we require that

2λV (2, t − 1) ≤ V (1, t),

that is,
2λA ≤ ν. (1)

A nonroot bag at level k receives λV (k+1, t−1) values from its child, and at most (1−λ)V (k−1, t)
values from its parent. Therefore, we require that

(1 − λ)V (k − 1, t − 1) + λV (k + 1, t − 1) ≤ V (k, t),

that is,
(1 − λ)/A + λA ≤ ν. (2)

Equations (1) and (2) take the place of Paterson’s inequality (1).
Since all of the values are passed up from one side of the bag, we can take λ = 1/2p, instead of

Paterson’s 1/2p−1, and we need only insist that

µ ≤ λ (3)

instead of Paterson’s inequality (3): µ ≤ λ/2.
We can redefine the strangeness of a value to be zero if it is on the correct side of the tree, and

one less than the level of the bag that it is in, otherwise. In the analysis of the number of values
of strangeness greater than 1, since each nonroot bag has only one child to receive strangers from
and the root can contain no strangers, Paterson’s inequality (4) becomes

A2δ2 + ε ≤ δAν. (4)

Only the children of the root can contain values of strangeness 1. Each can receive values of
strangeness 1 from its child (where they had strangeness 2), from mistakes in the root’s γ-halving,
and from the existence of an unbalanced number of left-seeking and right-seeking values in the root.
There can be at most µδA2νt−1 strangers of the first kind, at most γνt−1n/2 of the second kind,
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and, by a similar argument to Paterson’s (remembering that we are dealing with the root instead
of an arbitrary bag), at most

µδA2νt−1n

1 − A2δ2

of the third kind. Therefore, Paterson’s inequality (5) becomes

δA +
γ

2Aµ
+

δA

1 − A2δ2
≤ ν. (5)

Our separators are also less complicated than Paterson’s since they need only be γ-halvers in
the root and ε-nearsorters elsewhere (and thus no longer need to serve double duty). The depth of
our separator is thus

max{C(1 − η − 2µ, γ),
p∑

i=1

C(2iµ, εp)},

where

η =
µδA2

1 − δ2A2
.

The following choice of parameters:

p=3 ε1=0.0325 λ=0.125 µ=0.0419
ε=0.11082 ε2=0.03623 A=3.0039 δ=0.0672
γ=0.02988 ε3=0.04209 ν=0.75098

satisfies all of the above inequalities, and results in approximately 2.42 log n iterations, with a γ-
halver of depth 135 used in the root, and an ε-nearsorter made up of εi-halvers for 1 ≤ i ≤ 3, each
of depth 45. Thus the depth of the resulting halving network is less than 327 log n.

6 Conclusion and Open Problems

We have presented efficient algorithms for processing priority queue operations in parallel and de-
scribed how these algorithms can be used to design an architecture for load sharing in multiprocessor
systems. Our algorithms are simple and practical except for their reliance on AKS or AKS-like con-
structions. It remains to design algorithms that are free of the excessive constant-multiple overhead
that this entails.

We have demonstrated a method for the construction of halving networks that are much shal-
lower than the best currently known sorting networks. Our analysis of halving networks is probably
pessimistic. We conjecture that halving networks of depth less than 10 log n exist. It is an open
question whether there is an analog of Leighton’s Columnsort [15] for halving networks, which
would give an n processor constant degree network which could halve n values in time O(log n).

Our parallel priority queue algorithms are not work optimal (work is defined to be the product
of the time and processor bound), since the insertion of n values into a parallel priority queue
takes work O(n log n log p), which is asymptotically larger than the decision tree lower bound of
Ω(n log n) (for p = o(n)). It remains to be seen whether work optimal bounded degree algorithms
are possible.

For a parallel priority queue to be useful in practice for multiprocessor scheduling, it must
support dynamic updating of priorities, and real-time cancellation of tasks by the general-purpose
processors. The efficient implementation of these operations remains an open problem.
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