
fnfo~ati~n Pracessing *Letters 33 (i9S9/90) Hi-162
North-Holland

30 November 1989

Bruce PARKER

Ian PARBERRY

We study the problem of using sorters of k vabxes to form large sorting and merging networks. For n an integral power of
k, we show how to merge k sorted vectors of length n/k each using 4 log, n - 3 layers of k-sorters and 4 log* n - 5 layers of
k=ittiqut binary mergers. As a result, we show how to sort R v&es using 2 iag$ n -log, n layers of k-sorters and
2 logf n - 3 fog& n * I fayers of k-input l;inar)r mergers.

Keywords: Parallel processing, analysis of algorithms

It is reasonable to assume that sorting chips
will be available in the near future, It would be
interesting to know how to wire these chips to-
gether to form a fast sorting network. In particu-
lar, if each chip has k inputs and k outputs, where
constant k 3 2, we show how to sort using at most
4 log; n levels of k-sorters. We do so by means of
a rn~ifi~ ColumnSort 18).

This question was posed in a different setting
by ante f?, Problem 5.3.4.44, page 243f:

Study the properties of sorting networks which
are mede from k-sorter modules instead of
2-sorters. . . . Are there efficient ways to sort k2

elements with kmsorter modules, for all k?

ur t~~iqu~ results in a sortie network for it2
ng 6 layers of k-sorters plus 3 layers

~ificatio~s, this

2-sorters, which Drysdale and Young [4] and Van
Voorhis [ll] generalized to a k-way merge, but
still using 2-sorters. Leighton [8] gave a generaliza-
tion of Batcher’s Odd-Even ~e~e~rt [Z] by
showing how to sort an r b: c matrix. Bilardl and
Preparata [3] used a tree of mergers of various
sizes to sort using cube-connoted cycles. Our
meth~ differs from the later two in that we sort
using no primitive object with more than k inputs
or outputs. Finally, Tseng and Lee f9] prer ented a
gcncralization of Bat&et% Merge Sort, but used
O(k) layers of k-sorters to fi~sh the sort after
~~~~o~li~at~o~, compared to our use of only 4 
layers (plus mergers). 

We will approach the problem by first skowing 
bow tu construct (k, n/k )-mergers from k-sorters9 
where an (x, y)-merger is a sorting network which 
takes as ini 2t x sorted sequence of y values eack 
and produces as output a single sorted sequence of. 
xy values. As a specirl case, we refer io a 

~~~Q~ merger. 
d version of ~~i~~-

in S~tlo~t 2.

Volume 33. Number 3 INFORMATION PROCESSING LETTERS 30 November 19b3

we obtain a slightly improved processor saving
theorem (Section 3) and a construction Of a

(k, n/k)-merger using 4 log, n - 3 layers of k-
sorters and 4 log, n - 5 layers of k-input binary
mergers (Section 4). Finally, in Section 4, we show
how to sort n vahtes using 2 log: n - logi- n layers
of k-sorters, and 2 log,” n - 3 log, n + 1 layers of
k-iztptrt binary mergers.

We want to sort n values arranged in a matrix
with r rows and c coiumns. The columns are
numbered 0 through c - 1 and the rows 0 through
r - 1. We require that n = rc, c 1 r, aild r >, c.

Before we present the algorithm, we should be
pecise about the notion of diagonalizing a matrix.
Herr: is the intuition: we cut diagonals through the
matrix, just as Leighton describes for an alterna-
tive version of ColumnSort. However, instead of
iaying out the values in column order, we lay them
OU row order.

rc formally, we move each value at position
(i, j) to position (i +j, j). The matrix expands
by c - 1 rows downward. We fill the space vacated
in the upper ~~t-ha~d corner with $c(c - 1)
“smal1’f values (negative inanity for sorting in-
tegers, zeroes for sorting zeroes and ones) and fill
the lower left-hand corner with $c(c + 1) “large”
values (positive infinity for sorting integers, unes
for sorting zeroes and ones). These dummy values
will later be pushed to the extreme rows of the
matrix and thus be discarded. The extra row of
Ones is just to Ikeep the total nunioer of rows a
niultiple of c.

.I. bodied CohnSort
Partition the matrix into r/c by c rectangles
and sort each into row major order.
Sort the columns downwards.

agonalize the matrix as described above.
rtition the matrix into c X c squares and sort
h into row major order.
r-g:&;” each half square with its qate in the

See Figs. I and 2 for an example.

riiter Step 5. After Step 2

Fig. 1. Matrix after first two steps.

We note the following in comparison
with Leighton’s ColumnSort:

(1) The resulting matrix is in row-major, in-
stead of column-major order as in Leighton’s al-
gorithm.

(2) Our Step I corresponds to ColumnSort’s
Steps 1 and 2.

(3) By Step 3, we have reduced the problem of
sorting a rectangular array to the problem of
sorting the columns (twice) and sorting squares

-

0

I__ _ s
+jd

me_.._

.

0

Volume 33, Number 3 ~NFO~:~~IO~ BROCESSING LE WEitS 30 Novemtxi 1989

(once). For r not much bigger than c, we have not
improved the sortedness very much, as we rely in
Step 4 on an ability to sort a region almost as
large as the original problem. However, for r
much larger than c, a smaller sorter will suffice for
Step 4 and tbtts the time for Steps I and 2
dominate the inning time.

We now prove the correctness of the algorithm.
0ur proof uses the O/l Principle (a corollary of a
theorem due to Bouricius [7, p. 2241) instead of
Leighton’s approach of bound~g the displace-
ment of any given value from its final poBtion.
We will use the te~nology “clean” and “dirty”
to describe regions of zeroes and ones which are
homogeneous (all ones or ail zeroes) and heteroge-
neous (a mixture of zeroes and ones), respectively.
The idea is to show that the matrix can be parti-
tioned so that there exists a boundary between the
zeroes and ones. More formally we need to show
that after applying some alleged so&g method,
there exists an index p, 0 <p G n, such that all
positions rank-‘(i) for i <p are zeroes and all
positions rank-‘(i) for i 2 p are ones. For a rank,
we will be satisfied with any bgection rank:
(O... r-l} x {O...c- 1) --* (O...n- 1) which
informs us that position (i. j) holds a value which
is the (rank(i, j))th smallest.

2.1. Afier Step 2, the zeroes and ones are
separated by a morzotone non-decreasing boundary,
that is, for al! i, j_ 0 S$ i e j < r, there are at least as
many zeroes in the ith row as in the jth.

f. The rows remain sorted after sorting the
columns [S]. Thus, there are at least as many ones

in row i + 1 as row i, 0 6 i < r - 1. Suppose other-
wise. consider a row i’ which has more ones than
row i’ + II. Since the rows are sorted, there must
exist a column j such that (i’, j) has a one and
(i’ + 1, J’j a zero, meaniag that the ~o~~rn~s
are not sor as was assumed. 0

Afier step 2, the dirty’ i,e~~~~ has

~~~~~~. For c = 2, as in Batcher’s Odd-Even 
h4erge, the dirty region has height at most I after 
diagonaliiation, that is, there is at most one duty 
row. Thus 2-sorters applied to each row, in place 
of Steps 4 and 5, will suffice to finish the sort. 

urns 2.3. After Step 3, there are no two adjacent 
squares such that the lower square has more than 
&” - 3c + 2) zeroes and the upper sqzzarz has 
more thlrasz $(c” _ 3c f 2) ozes. 

l The only interesting case occurs when the 
dirty region spans two adjacent squares. Suppose 
there is at least OX ‘I in me upper square. Con- 
sider the situation before Step 3. A row after Step 
3 was a back diagonal before diago~~zation. 
Thus a square after Step 3 was a rhombus before 
diagonalization. Let the highest 1 in the upper 
rhombus be at position (i, j), choosing the left- 
most 1 in case of a tie. Let i,=i++, i’=f(i+ 
1 j/c]c, and i” = i’ -j (cf. Fig. 3). By Lemma 2.1, 
the region to the right and below the position 
(i, j) must consist of all 1’s. This region includes 
at least c(c -jj - i(i” - i)(i*’ - i + 1) - $(i, - 
i’)(io - i’ f 1) positions inside the lower rhombus, 
all of which must therefore be 1’s. The region of 
the iOth row and below must also be l’s by Lemma 
2.2. This region includes at least f( i’ + c - i,)(i’ 

159 



Volume 33, Number 3 INFORMATION PROCESSING LETTERS 39 November 1989 

+ c - i, + 1) p&ions. We observe that tbe num- 
ber of O’s in the bottom rhombus is maxi~~ed 
when i+j=i’-I, that is, i-i’-j-1. Thus 
I I, * I 1 and to - i’ = c --I - ! scd the number 
Lf yP: in the lower rbombus is at least +(j + l)( j 
-t2)fc(c-j)-l-‘b(c-j-l)(c-j)=+c*+ 
&-l-j. Since j<c--- 1, we can conclude that there 
are at least j(c2 + 3~ - 2) l’s in the bottom 
rhombus and at most 4~” - (c* + 3c - .2) = $(C2 
- 3~ + 2) 0%. Symmet~cally, we observe that if 
there is a zero in the lower square, then there are 
at most i(c* - 3c + 2) ones in the upper square. 

Cl 

m 2.& t%r surting ~lg~~~thrn jirlishes with 
the rn~t~~~ in row urder. 

By Lemma 2.2, the algorithm reduces the 
dirty ;e&ion to a c x c area after Step 3. Thus the 
dirty region either fits entirely within one of the 
e x c squares of Step 4 or it straddles two adjacent 
squares. In the former case9 Step 4 ~mpletes the 
sort and Step 5 dccs rioting, In the latter case, we 
use Emma 2.3 to assert that Step 5 will patch up 
the remaining dirty region. 0 

Unlike Leighton’s ColumnSort but like 
Odd-Even MergeSort, we diagonalize the 

matrix. Doing so after Step 2 reduces the height of 
the dirty region to c - 1 and r~uires only that we 
rn~r~e half squares with their nei~bors in the 
adjacent squares in Step 5. Without diagonaliza- 
tion, we wodld need to merge each whole sqtiare 
with each of its neighbors. 

3. a 

To be complete, we ought to re-establish Leigh- 
ton’s processor saving theorem. This result relies 
on a family of sorting circuits an 
how to construct them. 
text, *i: show that when 
~A~~~~tbrn 2.1) is used in place 
effectively Hague the cirn~ of the 
~~~~~i~s, 

Brd. We set r = N/j(N) and c = j(N) and use
Algorithm 2.1. We implement Steps 1 and 2 by
pipelining an N/j(N)-input j(N/j(N))(=
a(j(M))) time sorting circuit. The number of
vectors to be pushed through the sorter is j(N).
Since the total running time of a pipelined circuit
ia ihc bum of the circuit depth plus the number of
vectors minus one, the running time is at most
2 j(N) = o(M1/3), The number of nodes Is
bounded from above by the circuit width N/j(N)
times the circuit depth at most 2(j(iv)j or O(f’).

Step 3 is just a matter of rewiring and so
requires zero time.

We implement Step 4 by pipelining N/(j(N)*
.j(j(N)2)) copies of a j(N)2 input j(j(N)2)
depth sorting circuit. We use these circuits in
parallel by dividing the N values into j(j(Nf2)
vectors. Each vector is further partitioned into
N/(j(N),2f(f(E >*)) subvectors of j(N)’ values
each, Each subvector is associated with a separate
sorter. At each stage of the pipeline we input a
vector by inputting each subgroup into the first
stage of its sorter. Since there are j(j(N)‘) vec-
tors and the depth of each sorter is j(j(N)‘), the
running time for this step is 2 j(j(N)2) = o(N 2/9).
The number of nodes is then at most the number
of circuits ZV/(j(N)*j(j(N)*)) times the circuit
width j(N)* times its depth j(j(N)*) or O(N).

We complete the construction by using an
j(N)2 input CTdd-Even Merge circuit of 2 j(N)2
-log f(N) (= o(iti I/’ log N)) nodes and
2 log j(N) (= qlog N)) depth to im~:ement Step
5

e total ~~rnber of
the ru~~i~~ time is

In particular, for j() = @[log’ N) for con-
s 4 and 5

ow a0 c0i!lsmct n-sorkrs fmrl k-sorters

In this section, we show how to construct large
mergers and sorters as a direct consequence of our
modified ColumnSort.

We begin by constructing an jk, n/k)-merger.
We assume that n is an integral power of k and
that C is a perfect square. *We can save mergers by
using a @, ~./~)-merger. We do so by directly
implementing our modified ColumnSort.

~o~§~~~~~ i$ at (Jii;, ~~~~=rne~e~
= $e use Algorithm 2.1. Let r ==~/a and c

1. Lay out the fi sequences of n/G sorted
values in row major order.

2. Recursively merge each column using
(Ji;, n/k)-mergers.

3, Diagonahze the matrix.
4. Use one layer of k-sorters to sort the fi

x 16 squares into row major order.
5. Use one layer of (2, $k)-mergers to merge

each half square with its mate in the adjacent
square,

The redolence for the number of layers of
k-sorters is d,(n) = d,(n/v%) -i- 1 for n 2 k, and
d,(k) = 1, while that for the (2, f k j-mergers is
d,(n) = ~m(~/~) + 1 for n > k, and ~~~k~ - G.
Thus we use 2 log, n - t layers of k-sorters and
2 log, n - 2 layers of (2, $k)-mergers to construct
our {v%, ~/~)-merger.

We form a (14 n/k)-merger 2s follows: parti-
tion the k vectors into fi groups of fi, merge
each group, and then merge the resulting fi
vectors. This can be accomplished by a
(a, n/k)-merger and a (fi, n/v%)-merger. A

k~-merger can be co~st~~ted in a recur-
nner similar to that of our (r/l;, n/t&)-
but in 2 iog, n - 2 iayers of k-sorter:; and

2 logk n - 3 layers of (2, ok)-mergers. Thus a
jk, e/k ~.-merger can be done in 4 log, n - 3 !ayeric

s and 4 log, n - 5 layers (2, 4k)-
f we restrict ourselves to ouly k-

8 layers of k-sorters to

into k groups of n/k values, recursively sort each
group, and then merge the resulting k vectors
using a (k, n/k)-merger, This gives us the recur-

rence ds(n) = d,(n/k) -I- 4 log, n - 3 when n > k
and d,(k) = f for the number of layers of k-sorters
used and the recurrence d;,(n)=d,(n/\lji;) +
4 log, n - 5 (n > k) and d,,,(k) = 0 for tbe num=
ber of layers of (2, ik)-mergers used. Thus we use
2 log: n - logk n layers of k-sorters and 2 log; n
- 3 ;Og, a + 1 layers of (2, $k)-mergers. If we
restrict ourselves to use only k-sorters, this method
uses 4 logi n - 4 log& - 4 log, n + 1 layers of k-
sorters.

We have exhibited a generalization of Batcher’s
Odd-Even Merge to a k-way merge and from this
a const~ction of a k-way merger and an o(1)
depth sorting network for n ~01~0~~ in k.

Other improvements are possible in the sorting
network construction. For instance, we could
delete Step 3 from the modified ColumnSort.
Without diagonalization, the rows and columns of
the e x c squares remain sorted. Thus sorting of
the c x c squares does not require the full capabil-
ity of a sorting network. Drysdale and Young [4]
and Van Voorbis fll] both present
depth tictwo& which finishes the SOY
6 x d;; square of vaiues with the ro
umns sorted. Since this is more than twice as fast
as Batcher’s sorting networks, we can use these
networks for Step 4.

We have not yet answers Knotts irn?~~~~t
‘question, Here we assume that k2 = n and ask
whether a k2 sorter can be constructed from three
levels of k-sorters (plus O(l) levels of k-input
binary mergers), Sue a construction could be
used rec~rs~v~~y to bu a @log2 pt) depth sorting
~~tw~~~ with a sl~all constant multiple ~depe~d-
ing on how many mergers the co~str~~t~o~ re-

uires). ~~~~0~~ t I’ = c = k and that we pre-
roeess the sq?aare

rows 2nd columns.

Volume 33, Number 3 INFORMATION PROCESdING LETTERS 30 November ?BS!?

4 squares together in O(log k) depth. We have
found several ways of partitioning the square into
k I& x .fi subsquares but unfortunately with 4
recursive calls, thus using Q(2og’ n) time. Van
Voorhis [lC] has shown that Q(log’ n) levels of
2-sorters are required for any sorting network
based on a k-way merge where k is a cons!ent,
but the proof yields only a lower bound of
Q(log n) for a G-way merge.

Ae enb

‘fbn f;mt ..-.rLer -1.4 1:1-e
L” l&l”& ixiiii”. +y&#bl;; fifi= r,.:, rhznk. T.&en

Hagerup for a careful r sading of an early draft cf
thk paper.

lerences

[l] M. Ajtai, J. Komlos, and E. Szemer&di, An O(n log a)
sorting network, in: Proc. 15th Annual ACM Symposium
on Theory oj Compufing (1983) l-9.

[2] K.E. Batcher, Sorting networks and their applications. in:
Proc. AFIPS 1968 SJCC (1968) 307-314.

]3] G. Bilardi and F.P. Preparata, A minimum area VLSI
network for G(log n) time sorting, in: Proc. 16th Annual
ACM Symposium on the Theory of Computing (1984) 64-70.

[4] R.L. Drysdale III and F.N. Young, Improved divide,’
sort/merge sorting network, SIAM J. Comput. 4 (3) (1975)
264-270.

[S] D. Gale and R.M. Karp, A phenomenon in the theory of
sorting, in: Prof. 11th IEEE Annual Symposium on Switch-
ing and Automatu Theory (1970) 51-59.

[6] M.G. Grezn, Some improvements in nonadaptive sorting
algorithms, in: Proc. 6th Ann& Princeton Conference on
Information Sciences and Systems (1972) 387-391.

[7] D.E. Knuth, The Art gf Computer Programming, Vol. 3
(Addison-Wesley, Reading, MA, 1973).

[S] F.T. Leighton, Tight b,,...., _.. . . . n~nndc nn the comp!exrty of parallel
sorting, IEEE Trans. Comput. 34 (4) (1985) 344-354.

[9] S.S. Tseng and R.C.T. Lee, A parallel sorting scheme
whose basic operation sorts n elementf. Internat. J. Com-
put. Inform. Sci. 14 (6) (1985) 455-467.

(lo] DC. Van Voorhis, A lower bound for sorting networks
that use the divrde-sort-merge strategy, Technical Report
17, Department of Computer Science, Stanford Univer-
sity, Stanford, CA, 1971.

[ll] DC. Van Voorhis, An economical construction for sorting
networks, in: Proc. AFIPS NCC 43 (1974) 921-927.

