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We study the problem of using sorters of k values to form large sorting and merging networks. For n an integral power of
k, we show how to merge k sorted vectors of length n /k each using 4 log, n — 3 layers of k-sorters and 4 log, n — 5 layers of
k-input binary mergers. As a result, we show how to sort n values using 2ios] n—log, n layers of k-sorters and

2log? n —3log, n +1 layers of k-inpui binary mergers.
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1. Entroduction

It is reasonable to assume that sorting chips
will be availabie in the near future. It would be
interesting to know how to wire these chips to-
gether to form a fast sorting network. In particu-
lar, if each chip has k inputs and k outputs, where
constant k > 2, we show how to sort using at most
4 log? n levels of k-sorters. We do so by means of
a modified ColumnSort [8].

This guestion was posed in a different setting
by Knuth [7, Problem 5.3.4.44, page 243]:

Study the properties of sorting networks which
are made from k-sorter modules instead of
2-sorters. ...Are there efficient ways to sort k?
elements with k-sorter modules, for all A?

Our technique results in a sorting network for &?
elements using 6 layers of k-sorters plus 3 layers
of k-input binary mergers.

In various modifications, this protlem has been
studied before, most intensively for the case k=2
[1.2]. Green [6) examined a 4-way merge using

2-sorters, which Drysdale and Young [4] and Van
Voorhis [11] generalized to a k-way merge, but
still using 2-sorters. Leighton [8] gave a generaliza-
tion of Batcher’s Odd-Even MergeSort [2] by
showing how to sort an r X ¢ matrix. Bilard: and
Preparata [3] used a tree of mergers of various
sizes to sort using cube-connected cycles. Our
method differs from the later two in that we sort
using no primitive object with more than & inputs
or outputs. Finally, Tseng and Lee [9] presented a
generalization of Batcher’s Merge Sort, but usea
O(k) layers of k-sorters to finish the sort after
daeonalization, compared to our use of only 4
layers (plus merzers).

We will approach the probiem by first showing
how to construct (k, n/k)-mergers from k-soriers,
where an (x, y)-mergei is a sorting network which
takes as in; 't x sorted sequences of y values each
and produces as output a single sorted sequence of
xy values. As a special case, we refer «w a
2, k/2)-merger as a k-input binary merger. We
start by preseniing a modified version of Leigh-
ton's ColumnSort [8] in Section 2. As corollaries,
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we obtain a slightly improved processor saving
theorem (Section 3) and a construction of a
(k, n/k)-merger using 4 log, n—3 layers of k-
sorters and 4 log, n—5 layers of k-input binary
mergers (Section 4). Finally, in Section 4, we show
how to sort » values using 2 logZ n — log, n layers
of k-sorters, and 2 log? n — 3 log, n+ 1 iayers of
k-input binary mergers.

2. Modified ColumnSort

We want to sort n values arranged in a matrix
wiih r rows and ¢ coiumns. The columns are
numbered 0 through ¢ — 1 and the rows 0 through
r— 1. We require that n=rc, c|r,and r>c.

Before we present the algorithm, we should be
p-ecise about the notion of diagonalizing a matrix.
Here is the intuition: we cut diagonals through the
matrix, just as Leighton describes for an alterna-
tive version of ColumnSort. However, instead of
iaying out the values in column order, we lay them
out in row order.

More formally, we move each value at position
(i, j) to position (i +j, j). The matrix expands
by ¢ ~ 1 rows downward. We fill the space vacated
in the upper right-hand corner with ic(c—1)
“small” values (negative infinity for sorting in-
tegers, zeroes for sorting zeroes and ones) and fill
the lower left-hand corner with c(c + 1) “large”
values (positive infinity for sorting integers, ones
for sorting zeroes and ones). These dummy values
will later be pushed to the extreme rows of the
matrix and thus be discarded. The extra row of
ones is just to keep the total number of rows a
multiple of c.

Algorithm 2.1. Modified ColumnSort

1. Partition the matrix into r/c by c¢ rectangles
and sort each into row major order.

2. Sort the columns downwards.

3. Diagonalize the matrix as described above.

4. Partition the matrix into ¢ X ¢ squares and sort
each into row major order.

5. Merge each half square with its mate in the
adjacent square, that is, merge the last 1(¢? -
3¢ + 2) values of square i with the first 1(c? -
3¢+ 2) values of square i+ 1, 0 i < r/c.
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Fig. 1. Matrix after first two steps.

See Figs. 1 and 2 for an example.

Remark. We note the following in comparison
with Leighton’s ColumnSort:

(1) The resuvlting matrix is in row-major, in-
stead of column-major order as in Leighton’s al-
gorithm.

(2) Our Step 1 corresponds to ColumnSort’s
Steps 1 and 2.

(3) By Step 3, we have reduced the problem of
sorting a rectangular array to the problem of
sorting the columns (twice) and sorting squares
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Fig. 2. Matrix after sooo: | iwo steps
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(once). For r not much bigger than ¢, we have not
improved the sortedness very much, as we rely in
Step 4 on an ability to sort a region almost as
large as the original problem. However, for r
much larger than ¢, a smaller sorter will suffice for
Step 4 and thus the time for Steps 1 and 2
dominate the running time.

We now prove the correctness of the algorithm.
QOur proof uses the 0,71 Principle (a corollary of a
theorem due to Bouricius [7, p. 224]) instead of
Leighton’s appreach of bounding the displace-
ment of any given value from its final position.
We will use the terminology “clean” and “dirty”
to describe regions of zeroes and ones which are
homogeneous (all ones or all zeroes) and heteroge-
neous (a mixture of zeroes and ones), respectively.
The idea is to show that the matrix can be parti-
tioned so that there exists a boundary between the
zeroes and ones. More formally we need to show
that after applying some alleged sorting inethod,
there exists an index p, 0 <p <n, such that all
positions rank~'(i) for i <p are zeroes and all
positions rank " (i) for i > p are ones. For a rank,
we will be satisfied with any bijection rank:
{0...r—1}x{0...c—1} - {0...n—1} which
informs us that position (i, j) holds a value which
is the (rank(i, j))th smallest.

Lemms 2.1. After Step 2, the zeroes and ones are
separated by a monotone non-decreasing boundary,
that is, for alli, j, 0 < i <j <r, there are at least as
many zeroes in the ith row as in the jth.

Proof. The rows remain sorted after sorting the
columns [5]. Thus, there are at least as many ones
in row i + 1 as row i, 0 < i <r— 1. Suppose other-
wis2. Consider a row i’ which has more ones than
row i’ + 1. Since the rows are sorted, there must
exist a column j such that (i’, j) has a one and
(i’ + 1, j) has a zero, meaning that the columns
are not sorted as was assumed. O

Lemma 2.2. After Step 2, the dirty iegion has
height at mos: c.

Proof. After Step 1, each r/c X ¢ rectangie has at
most one dirty row. After sorting the columns is
Step 2, these ¢ dirty rows will be adjacent. O
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Remark., For ¢=2, as in Batcher’s Odd-Even
Merge, the dirty region has height at most 1 afier
diagonalization, that is, there is at most one dirty
row. Thus 2-sorters applied to each row, in place
of Steps 4 and 5, will suffice to finish the sort.

Lemwma 2.3, After Step 3, there are no two adjacent
squares such that the lower square has more than
W(e? —3c+2) zeroes and the upper square has
more than 1(c* — 3¢+ 2) ones.

Proof. The only interesting case occurs when the
dirty region spans two adjacent squares. Suppose
there is at least onc i in the upper square. Con-
sider the situation before Step 3. A row after Step
3 was a back diagonal before diagonalization.
Thus a square after Step 3 was a thombus before
diagonalization. Let the highest 1 in the upper
rhombus be at position (i, j), choosing the left-
most 1 in case of a tie. Let ig=i+c¢, i"=[(i+
1)/clc, and i” =i’ —j (cf. Fig. 3). By Lemma 2.1,
the region to the right and below the position
(i, j) must consist of all 1’s. This region includes
at least c(c—j)— 3" - (" —i+ 1)~ 3(ip—
i")(io — i’ + 1) positions inside the lower rhombus,
all of which must therefore be 1’s. The region of
the igth row and below must also be 1’s by Lemma
2.2. This region inciudes at least 3(i" + ¢ —iy)(i’

N
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Fig. 3. Situation hefore diagonalization.
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+ ¢ — iy + 1) positions. We observe that the num-
ber of 0’s in the bottom rhombus is maximized
when i+j=i’'—1, that is, i=i"—j—1. Thus
i”—i=1and ig—i"=c—j—1 and the number
of 1’s in the lower rhombus is at least 3(j+ 1)(j
+2)+clc—j)—1=4c—j—Ic—j)=13c*+
¢ +j. Since j < c — 1, we can conclude that there
are at least 1{c?+3c—2) 1’s in the bottom
thombus and at most ic?—(c?+3c—2)=1(c?
= 3¢ +2) 0’s. Symmetrically, we observe that if
there is a zero in the lower square, then there are
at most }(c?— 3¢ +2) ones in the upper square.

(]

Theorem 2.4. Qur sorting algorithm finishes with
the matrix in row order.

Proof. By Lemma 2.2, the algorithm reduces the
dirty region to a ¢ X ¢ area after Step 3. Thus the
dirty region either fits entirely within one of the
¢ X ¢ squares of Step 4 or it straddles two adjacent
squares, In the former case, Step 4 completes the
sort and Step 5 dces nothing, In the latter case, we
use Lemma 2.3 to assert that Step 5 will patch up
the remaining dirty region. O

Remark. Unlike Leighton’s ColumnSort but jike
Batcher’s Odd-Even MergeSort, we diagonalize the
matrix. Doing so after Step 2 reduces the height of
the dirty region to ¢ — 1 and requires only that we
merge half squares with their neighbors in the
adjacent squares in Step 5. Without diagonaliza-
tion, we would need to merge each whole squarc
with each of its neighbors.

3. A processor-saving theorem

To be complete, we ought io re-establish Leigh-
ton’s processor saving theorem. This result relies
on a family of sorting circuits and does not show
how to construct them. However, within this con-
text, we show that when our modified ColumnSort
(Algorithm 2.1) is used in place of Leighton's, we
effectively halve the time of the resulting surting
circats,

Theorem 3.1. Given a monotone function f such that
JUN)Y=o(N'"?) for all N and a family of f( N }-fevei
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circuits for sorting N numbers, one can construct a
family of bounded-degree O(N )-node networks that
can sort N numbers in 4f(N)+ o f(N)) word
sieps.

Proof. We set r=N/f(N) and ¢=f(N) and use
Algorithm 2.1. We implement Steps 1 and 2 by
pipelining an N/f(N)-input f(N/f(N))(=
O(f(N))) time sorting circuit. The number of
vectors to be pushed through the sorter is f(N).
Since the total running time of a pipelined circuit
is the sum of the circuit depth plus the number of
vectors minus one, the running time is at most
2f(N) = o(N'?). The number of nodes is
bounded from above by the circuit width N/f(N)
times the circuit depth at most 2( f{~ ) or O(}').

Step 3 is just a matter of rewiring and so
requires zero time.

We implement Step 4 by pipelining N/(f{N)?
-f(f(N)?)) copies of a f(N)* input f(f(N)?)
depth sorting circuit. We use these circuits in
parallel by dividing the N values into f(f(N)?)
vectors. Each vector is further partitioned into
N/(F(NY*(S{N)?)) subvectors of f(N)? values
each, Each subvector is associated with a separate
sorter. At each stage of the pipeline we input a
vector by inputting each subgroup into the first
stage of its sorter. Since there are f(f(N)?) vec-
tors and the depth of each sorter is f( f(N)?), the
running time for this step is 2f( f(N)?) = o( N2/%),
The number of nodes is then at most the number
of circuits N/(f(N)*f(f(N)?)) times the circuit
width f(N)? times its depth f(f(N)?) or O(N).

We comiplete the construction by using an
f(N)* inpnt Qdd-Even Merge circuit of 2f(N)?
-log f(N) (= o(N'? log N)) nodes and
2 log f(N) (= G(log N))depth to imp.cment Step
5.

Thus the total number of nodes required is
O(N) and the running time is O(f(V)). O

In particular, for f(N)=Olog® N) for con-
stant ¢, Steps 4 and 5 each require O(log log N)
time. The depth of any such ColumnSoii circuit is
dominated by the circuits used in Steps 1 and 2,
effectively having the running time of the networl,
as compaied with the 8f( N') + o f(N)) word sieps
of Leighion's version,
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4. How to construct n-sorters from k-sorters

In this section, we show how to construct large
mergers and sorters as a direct consequence of our
modified ColumnSort.

We begin by constructing an (%, n/k)-merger.
We assume that # is an integrai power of & and
that % is a perfect square. We can save mergers by
using a (Vk, n/ vk )-merger. We do so by directly
implementing our modified ColumnSort.

Construction of a (V& , n/Vk )-merger
We vse Algorithm 2.1. Let r=r/vk and ¢
k

1. Lay out the vk sequences of n/ vk sorted
values in row major order.

2. Recursively merge each column using
/k , n/k)-mergers.

3. Diagonalize¢ the matrix.

4, Use one layer of k-sorters to sort the vk
x vk squares into row major order.

5. Use one layer of (2, 1k)-mergers to merge
each half square with its mate in the adjacent
sguare,

The recurrence for the number of layers of
k-sorters is d (n)=d(n/Vk)+1 for n>k, and
d,(k)=1, while that for ihkc (2, 1k)-mergers is
d,(n)= d,,,(rz/‘/l?) +1forn>k,and d,(k)=0.
Thus we use 2 log, n—1 layers of k-sorters and
2 log, » — 2 layers of (2, }k)-mergers to construct
our (Vk, n/k )-merger.

We form a (X n/k)-merger as follows: parti-
tion the k vectess into Vk groups of vk, merge
each group, and then merge the resulting Vi
vectors. This can be accomplished by a
Wk, n/ky-merger and a (Vk, n/v" }-merger. A
Wk, n/k)-merger can be constructed in a recur-
sive manner similar to that of our (Vk, n/ vk )-
merger, but in 2 log, # — 2 layers of k-sorters and
2log, n—3 layers of (2, }k)-mergers. Thus a
{k, n/k)-merger can be donein 4 log, n — 3 layers
of k-sorters and 4 log, n— 5 layers of (2, 1k)-
mergers. If we restrict ourselves {0 use only k-
sorters, we use 3 log, n — 8 layers of k-sorters to
form our (k/n/k)-merger.

We now use our (&, n/k)-merger to form a

recursive sorting network, We partition the inputs
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into & groups of n/k values, recursively sort each
group, and then merge ihe resulting k& vectors
using a (k, n/k)-merger. This gives us the recur-
rence d (n)=d(n/k)+4log, n—3 when n>k
and d (k) = 1 for the number of layers of k-sorters
used and the recurrence d,(n)=d, (n/ vk )+
4log, n—5(n>k)and d,(k)=290 for the num-
ber of layers of (2, $k)-mergers used. Thus we use
2 log; n—log, n layers of k-sorters and 2 log? n
—3iog; n+1 layers of (2, 1k)-mergers. If we
restrict ourselves to use only k-sorters, this method
uses 4 log? n—4log, —4log, n+1 layers of k-
sorters.

5. Summary

We have exhibited a generalization of Batcher’s
Odd-Even Merge 10 a k-way merge and from this
a construction of a k-way merger and an O(1)
depth sorting network for n polynomial in k.

Other improvements are possible in the sorting
network construction. For instance, we could
delete Step 3 from the modified ColumnSort.
Without diagonalization, the rows and columns of
the ¢ X ¢ squares remain sorted. Thus sorting of
the ¢ X ¢ squares does not require the full capabil-
ity of a sorting network. Drysdale and Young [4]
and Van Voorhis [11] both present a § log n
depth uctwork which finishes the sor§wg of a
Vn X n square of vaiues with the rows and col-
umns sorted. Since this is more than twice as {ast
as Batcher’s sorting networks, we can use these
networks for Step 4.

We have noi yet answered Knauth’s implicit

‘question. Here we assume that k?=n and ask

whether a k? sorter can be constructed from three
levels of k-sorters (plus O(1) leveis of k-input
binary mergers). Such a construction could be
used recursively to build a o(log? n) depth sorting
network with a small constant multiple (depend-
ing on how many mergers the construction re-
quires). Suppose that r=c =4k and that we pre-
process the sguare by using 2 k-sorters to sort the
rows and columns. Given this situation, Drysdale,
Young, and Van Voorhis have noted that it is
possible to recursively sort 4 Jk X 1k subsquares

- ) s . P} S Y
10 one pargliol recursive cail and ihen merge inese

16}
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4 squares together in O(log k) depth. We have
found several ways of partitioning the square into
k vk % /k subsquares but unfortunately with 4
recursive calls, thus using 2(log® n) time. Van
Voorhis [10] has shown that 2(log? n) levels of
2-sorters are required for any sorting network
based on a k-way merge where « is a constant,
but the proof yields only a lower bound of
Q(log n) for a Vn -way merge.
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