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Abstract

Searle’s arguments that intelligence cannot arise from formal programs are refuted
by arguing that his analogies and thought-experiments are fundamentally flawed: he
imagines a world in which computation is free. It is argued instead that although cog-
nition may in principle be realized by symbol processing machines, such a computation
is likely to have resource requirements that would prevent a symbol processing pro-
gram for cognition from being designed, implemented, or executed. In the course of the
argument the following observations are made: (1) A system can have knowledge, but
no understanding. (2) Understanding is a method by which cognitive computations
are carried out with limited resources. (3) Introspection is inadequate for analyzing
the mind. (4) Simulation of the brain by a computer is unlikely not because of the
massive computational power of the brain, but because of the overhead required when
one model of computation is simulated by another. (5) Intentionality is a property that
arises from systems of sufficient computational power that have the appropriate design.
(6) Models of cognition can be developed in direct analogy with technical results from
the field of computational complexity theory.

Penrose [30] has stated

. . . I am inclined to think (though, no doubt, on quite inadequate grounds) that
unlike the basic question of computability itself, the issues of complexity theory
are not quite the central ones in relation to mental phenomena.

On the contrary, I intend to demonstrate that the principles of computational complexity
theory can give insights into cognition.

In 1980, Searle [36] published a critique of Artificial Intelligence that almost immediately
caused a flurry of debate and commentary in academic circles. The paper distinguishes
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between weak AI, which uses the computer as a tool to understand cognition, and strong
AI, which has as its main goal the recreation of cognition in a computer by means of a for-
mal symbol-processing program. Searle professes to prove by thought-experiment, analogy,
and introspection that no formal program can think, and thus deduces that strong AI is
misguided.

Despite the flood of criticism and counter-criticism that has been published, Searle seems
to have changed his opinions little over the past decade (Searle [37, 38]). As a theoretical
computer scientist I do not find his arguments convincing. I propose here to expose some
fundamental misunderstandings in his arguments. I do not directly refute his claim that
strong AI is misguided, but I propose to show that his demonstration of this proposition is
deeply flawed. I believe that strong AI cannot be dismissed on purely philosophical grounds.
However, in the course of my argument I will raise some of my own doubts about strong AI.

The three main weapons that Searle uses against strong AI are introspection, reasoning by
analogy, and gedankenexperiment. Introspection can be highly unstable pedagogical ground,
since in using the mind to observe and reason about itself, one risks running afoul of the
Heisenberg Uncertainty Principle: the process of self-analysis may change the mind to the
extent that any conclusions are cast into serious doubt. Nonetheless, I am prepared to allow
introspection within certain bounds: I will allow Searle to look within himself and state that
he understands English and does not understand Chinese.

I am suspicious of reasoning by analogy primarily because one needs little experience
to realize that an analogy can be inappropriate if not properly subjected to the scrutiny
of logic. Similarly, the gedankenexperiment, despite its illustrious history, can be seriously
misguided. Since a gedankenexperiment is carried out purely in the mind, the conductor of
the experiment is free to construct a fictional world in which reality does not apply, and
hence runs the risk of coming to conclusions that have no basis in the real world. This
is the fundamental flaw in Searle’s reasoning: he carries out his gedankenexperiment in an
imaginary world where computation costs nothing.

Many academics from outside the field of Computer Science who like to publish papers
in the field appear to suffer from the misguided belief that Computer Science is a shallow
discipline (if nothing else, because it has the word “Science” in its name). Searle, like many
critics of Computer Science, does not appear to be aware of current tends in research. Searle’s
arguments are limited to the theoretical computer science before the 1970’s, which is based
on the concept of computability, and the Church-Turing thesis that all models of symbolic
computation are essentially the same.

Such a computational model assumes that computation is free. Unfortunately, just be-
cause a function is computable in the Church-Turing sense does not automatically mean that
it is computable in the real world. Computation consumes resources, including time, mem-
ory, hardware, and power. A theory of computation, called computational complexity theory1

has grown from this simple observation, starting with the seminal paper of Hartmanis and
Stearns [16]. The prime tenet of this technical field is that some computational problems
intrinsically require more resources than others. The resource usage of a computation is
measured as a function of the size of the problem being solved, with the assumption that we

1Computational complexity theory should not be the confused with the more recent science of complexity
popularized by physicists.

2

I. Parberry, "Knowledge, Understanding, and Computational Complexity",in Optimality in Biological and Artificial Networks?, 
Chapter 8, pp. 125-144, (D.S. Levine, W.R. Elsberry, Eds.), Lawrence Erlbaum Associates, 1997



can solve small problems with the computers available to us now, and we will wish to scale
up to larger problems as larger and faster computers become available.

The crux of Searle’s argument is the following: just because a computer can compute
something does not imply that it understands it. This is a reasonable hypothesis in the light
of 1950’s Computer Science: a function being computable is not sufficient reason to believe
that something that computes it truly understands it. According to Searle, proponents of
strong AI, in contrast, believe the opposite. The Turing2 test (Turing [42]) pits a human
being against a computer. If an independent observer cannot tell in conversation with the
two via some anonymous medium such as a teletype which is the computer and which is the
human being, then the computer is said by proponents of strong AI to be “intelligent”.

Searle’s gedankenexperiment consists of the following. Program a computer to converse
in a natural language by providing it with a table of all possible inputs and their corre-
sponding outputs. When given an input, the computer looks up the correct response in the
table, and outputs that response. He reasons that this passes the Turing test, but cannot
be said to really understand what it is doing. He justifies the latter observation with an
analogy. A human being can be given such a look-up table for a language that he or she
does not understand, for example, Chinese. This person can pass the Turing test in Chinese,
despite the fact that they do not understand Chinese. Unlike many of Searle’s critics, I am
quite comfortable with this line of argument, and quite willing to concede that a computer
programmed in this manner does not understand what it is doing in any reasonable sense
of the word. However, Searle has missed an important point early in his argument. He has
assumed that such a computer program is possible. I believe that such a program is not
possible for the simple reason that it requires too much in the way of resources.

Since the number of legal utterances in a natural language is uncountable (Langendoen
and Postal [17]), it is impossible to compile a complete look-up table of a language such
as English or Chinese. However, this is not a serious barrier to the experiment. It would
be sufficient for the purposes of passing the Turing test to compile a table of commonly
used statements and legitimate responses. Whilst the number of commonly used questions
and statements is a matter of some debate, a conservative lower bound is easy to obtain by
considering questions of a particular form.

Consider queries of the form

“Which is the largest, a <noun>1, a <noun>2, a <noun>3, a <noun>4, a <noun>5, a
<noun>6, or a <noun>7?”,

where <noun> denotes any commonly used noun. Seven nouns were chosen rather than any
other number since that appears to be the number of concepts that a typical human being
can grasp simultaneously (Miller [20]). How many queries are there of this form? There
is little difficulty in constructing a list of 100 commonly known animals (see, for example,
Figure 1). Therefore there are 100 choices for the first noun, 99 for the second, etc., giving
a total of 100 · 99 · 98 · 97 · 96 · 95 · 94 = 8 × 1013 queries based on Figure 1 alone.

2Alan Turing made fundamental contributions to both theoretical computer science and AI, which is
not surprising since the two fields were at the time inexplicably intertwined by the fact that the only
computational device upon which to model a computer was an intelligent one: the brain.
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aardvark crocodile guinea pig orangutan shark
ant deer hamster ostrich sheep
antelope dog horse otter shrimp
bear dolphin hummingbird owl skunk
beaver donkey hyena panda slug
bee duck jaguar panther snail
beetle eagle jellyfish penguin snake
buffalo eel kangaroo pig spider
butterfly ferret koala possum squirrel
cat finch lion puma starfish
caterpillar fly lizard rabbit swan
centipede fox llama racoon tiger
chicken frog lobster rat toad
chimpanzee gerbil marmoset rhinocerous tortoise
chipmunk gibbon monkey salamander turtle
cicada giraffe mosquito sardine wasp
cockroach gnat moth scorpion weasel
cow goat mouse sea lion whale
coyote goose newt seahorse wolf
cricket gorilla octopus seal zebra

Figure 1: 100 animals.

Figure 2: The Great Pyramid of Cheops and the look-up table.
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This is a very large number that requires grounding in everyday experience. The Science
Citation Index3 is a publication that approaches the human limit for usable information
crammed into the smallest amount of space. Each page contains approximately 275 lines
of 215 characters, and each inch thickness of paper contains 1000 pages (over 5.9 × 107

characters). Assuming we could fit two queries of the above form and their responses on
each line, each inch of paper would contain 5.5×105 queries. Therefore, if a look-up table for
queries of the above form were constructed, and all the pages were stacked up, they would
be 1.45× 108 inches, that is, 2, 300 miles high. This would require a volume of paper almost
200 feet long, 200 feet wide, and 200 feet high. In contrast, the Great Pyramid of Cheops
was (at the time of construction) over approximately 760 feet square and 480 feet high (see
Figure 2).

A reasonable defense against this objection is that computers can store data more ef-
ficiently than the printed word. It is possible in principle to construct a hard-disk array
capable of storing our example look-up table. If we extrapolate slightly from current state-
of-the-art, a disk capable of storing 2.5×109 characters takes on the order of 100 cubic inches
of volume and costs on the order of $1000. Therefore, 8× 1013 queries at 100 characters per
query requires 3.2 million disks, which would take up a volume of 1.85 × 105 cubic feet (or
a cube 57 feet on a side), and cost $3.2 billion.

It is clear that our toy example only scratches the surface of the true size of a look-up
table for a natural language. It is not too difficult to compile a list of 1400 fairly common
concrete nouns (see the Appendix). It is not unreasonable to expect computers to be able
to match the highest human ability, which would be 9 nouns per query (Miller [20]). The
total amount of storage required for 14009 = 2×1028 queries, with 100 characters per query,
5 bits per character, is 1031 bits.

If we were to store this on paper, it would require a stack almost 1010 light years high.
In contrast, the nearest spiral galaxy (Andromeda) is 2.1 × 106 light years away, and the
distance to the furthest known galaxy in 1988 was 1.5×1010 light years (Emiliani [11]). If we
were to use hard-disks, it would take 5 × 1020 drives, which would occupy a cube 580 miles
on a side. Even if we were to extrapolate wildly beyond the limits of forseeable technology
and conjecture that each bit could be stored on a single hydrogen atom, it would require
almost seventeen tons of hydrogen. Yet our query set is still relatively small compared to the
true number of reasonable natural language queries. It is not too difficult to compile thirty
different adjectives or adjectival clauses to replace “largest”), which multiplies the resource
requirement by thirty. Increasing the list of nouns to two thousand increases it by a further
factor of twenty. Increasing the list of nouns to ten thousand increases it by a further factor
of almost two million.

Therefore, it is fairly safe to conclude that it is not possible to pass the Turing test
by simply using a look-up table. Where does this leave Searle’s Chinese Room gedanken-
experiment? A look-up table certainly contains knowledge, but no understanding. Searle’s
gedankenexperiment illustrates that understanding enables us to perform computations with
a reasonable amount of resource usage; certainly less memory than is required to store a
look-up table, and less time than is required to access one. This is a purely operational
definition of understanding, and thus may not be satisfactory to a philosopher such as Searle

3Published by the Institute for Scientific Information.
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who is more interested in a denotational definition, but I believe that any theory of cognition
that does not take this into account rests on unstable foundations.

Naturally, understanding is not a Boolean trait; one can have a little understanding,
rather than being limited to no understanding or complete understanding. With a little
understanding of the concept of size, one can reduce the look-up table for the example queries
simply by sorting the list of objects in increasing order of size. We appear to understand
such things not by memorizing lists of facts, but by grounding the abstract concepts of the
objects involved in everyday experience, from which information we compute facts such as
their relative size. I believe that understanding evolved as the most efficient way of storing,
cross-referencing, and reasoning about large quantities of environmental data (that is, the
most efficient way that can be realized within the design parameters of evolution).

One point on which Searle and I agree is that a digital computer can, in principle, simulate
a human brain. The electrical behaviour of a single neuron is far from being well understood,
but I would be surprised if it could only be described using continuous mathematics. My first
objection is on general principle: most phenomena in the Universe appear to be discrete,
although in many cases the quanta are so small that continuous mathematics is a good
approximation to reality. My second objection comes from the experimental observation
that the brain often continues to function when large numbers of neurons are damaged, and
under conditions in which a large number of them misfire. I find it difficult to believe that
this robustness would be possible if it were essential that every neuron compute a real value
to infinite precision. Fixed precision is almost certainly enough, and probably not too large
a precision. Any fixed precision computation can be realized by a discrete computation.

Searle feels uncomfortable with the consequences of the Church-Turing thesis. Computers
can be realized with any medium that can represent Boolean values and compute binary
conjunction and complement, including water pipes. In principle, a plumber could devise a
sewer system that can simulate a human brain. Searle finds this absurd, but not for the same
reasons that I do. There is far too much computational power in the brain to implement it
as a sewer system.

Can we make a rough estimate as to how much computational power is contained in the
human brain? Barrow and Tipler [2] give a range of 1010 to 1012 floating point operations
per second, but they assume that the computation is taking place purely within the soma
of the neuron. Conventional wisdom currently conjectures that a significant amount of the
computation actually takes place within the synapses. Turing [42] made an estimate in the
1950’s that with the benefit of modern knowledge seems optimistically low.

It is difficult to obtain reliable estimates of the number of neurons in the human brain.
Shepherd [39] estimates that the human cortex has a surface area of about 2,400 square
centimeters, and Rockell, Hiorns, and Powell [31] report a uniform density of about 8× 104

neuron per square millimeter, from which we can conclude that the number of neurons in
the cortex alone is of the order of 1010. I assume that the bulk of the information passed
from one neuron to another passes through the synapses; the number of such connections
per neuron varies with the type of neuron in question, and is somewhat difficult to estimate,
but a figure of 103 connections per neuron is probably conservative. It is probably optimistic
to assume that a pair of inputs to a neuron can be combined using a single floating point
operation; even so, this implies that each neuron computes the equivalent of 103 floating
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point operations to combine the information input to it across its synapses. Combining
these naive estimates with a firing time of 10−2 seconds per neuron, we see that the brain
appears to have a processing power equivalent to at least 1015 floating point operations per
second.

Searle’s water-pipe brain simulator is clearly something that can be imagined, but not
constructed. Even under high pressure, water would flow so slowly in the pipes that in
order to achieve 1015 floating point operations per second it would require on the order of
1015 floating point operations to be computed simultaneously at different parts of the sewer.
Even if these results could be combined in a meaningful way in a fast enough manner, the
sheer size of the system make it so unreliable that it would stand little hope of passing the
Turing test. For that matter, could a computer do a better job? Current supercomputers can
execute 1010 floating point operations per second, and it is estimated that we might reach
1012 by 1994 (Bell [3]). The brain appears to have more available computational power than
a thousand of these hypothetical supercomputers.

This type of argument rests on shaky pedagogical ground because it is impossible to make
an accurate assessment of the brain’s computational power given our current almost complete
lack of understanding of the principles of brain style computation. Our estimate may well
be too high or too low by several factors of ten. A second weakness is that technology is
advancing so rapidly that, if Bell is correct and 1012 floating point operations per second
are achievable by 1994, and advances in technology double computing speed annually, then
computers may reach the 1015 floating point operations per second needed to rival the brain
by as early as 2004.

One thing that we can be fairly certain of, however, is that the brain’s architecture is
in a sense optimized for the type of computation that it is to perform. I say “in a sense”
because there is little reason to believe that it is the absolutely optimum architecture (for
evidence that biological computing systems are suboptimal, see, for example, Dumont and
Robertson [8], Stork et al. [41], and Stork [40]). Rather, it is reasonable to believe that
evolution has led to a locally optimal solution to a complicated optimization problem whose
constraints include such factors as computational efficiency, heat loss, weight, volume, and
nutritional requirements. Current computers, on the other hand, have architectures that are
optimized within the constraints of current technology for the types of symbol processing
problems for which they are used. It is hardly surprising that the architectures of the brain
and the computer are radically different.

The simulation of the brain on a computer, then, is the task of simulating one model
of computation on a second, architecturally different, model. The concept of one computer
model simulating another is a key one in the theory of computational complexity theory.
The Church-Turing thesis states that any reasonable model of computation can simulate
any other one. Computational complexity theory has similar theses that state that these
simulations can be carried out with a fairly small overhead in resource use; there is the
sequential computation thesis (Goldschlager and Lister [15]), the parallel computation thesis
(Goldschlager [13, 14]), the extended parallel computation thesis (Dymond [9], and Dymond
and Cook [10]), and the generalized parallel computation thesis (Parberry and Schnitger [28]).

Nonetheless, each simulation requires an overhead in either hardware or time, often by
as much as a quadratic in amount of that resource used by the machine being simulated.
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Computer Synapses Updates

PC/AT 1.0 × 105 2.5 × 104

Symbolics 1.0 × 107 3.5 × 104

VAX 3.2 × 107 1.0 × 105

SUN 3 2.5 × 105 2.5 × 105

MARK III, V 1.0 × 106 5.0 × 105

CM–2 (64K) 6.4 × 107 1.3 × 106

Butterfly (64) 6.0 × 107 8.0 × 106

WARP (10) 3.2 × 105 1.0 × 107

Odyssey 2.6 × 105 2.0 × 107

CRAY XMP 1–2 2.0 × 106 5.0 × 107

MX–1/16 5.0 × 107 1.3 × 108

Table 1: Number of synapses, and synaptic weight updates per second for some common
computers to simulate a neural network (from [7]). The measurements for the MX–1/16 are
projected performance only.

Therefore, any computer doing a neuron-by-neuron simulation of the brain need not only be
as computationally powerful as the brain, but dramatically more so. For example, contrast
our figures on raw computing power above with experimental figures in [7] on simulating
synaptic weight updates in current neuron models (summarized in Table 1). The reason why
the computer figures are so poor (capable of simulating neural capacity somewhere between
a worm and a fly, see Table 2) is that the raw computing power figures that we gave earlier
completely ignored the extra overhead involved in the simulation. This is the real reason
that we should abandon any hope of simulating cognition at a neuron-by-neuron level, rather
than any philosophical or pedagogical objection.

Searle’s reasoning by analogy that there is little reason to believe that a simulation of
cognition is not the same as cognition is unconvincing. Certainly a simulation of a fire is not

Creature Synapses Updates

Leech 7 × 102 2 × 104

Worm 5 × 104 2 × 105

Fly 8 × 107 1 × 109

Aplysia 2 × 108 2 × 1010

Cockroach 9 × 108 3 × 1010

Bee 3 × 109 5 × 1011

Man 1 × 1014 1 × 1016

Table 2: Number of synapses, and synaptic weight updates per second for some common
creatures (from [7]).
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a fire, but for some purposes it does just as well. Pragmatically, if a simulation of cognition
is not possible by reason of the fact that such a simulation carries too much overhead,
then it is merely a matter of definition whether one calls it true cognition. Nonetheless,
Searle has raised an important point that has deep ramifications. Strong AI proceeds by
construction of a model of how the mind performs a task (such as understanding short
stories, Schank and Abelson [33]), and then implementing (Searle would say “simulating”)
that model on a computer. But what is introspection, if it is not simulating cognition? When
one introspects, one constructs a conscious model of mind process, in essence a simulation
of the mind. What right have we to believe that the products of introspection, which is no
more than the construction of an internal simulation of mind, bear any real resemblance to
the mind?

A crucial part of Searle’s argument is the concept of intentionality, which describes
directed mental states such as beliefs, desires, wishes, fears, and intentions. Intentional
states are related to the real world, but are not in one-to-one correspondence with it. One
can have beliefs that are false, desires that are unfulfillable, wishes that are impossible,
fears that are groundless, and intentions that cannot be realized (Searle [34, 35]). There
are conscious intentional states, and unconscious intentional states, yet Searle devises a
logic of intentional states that is mirrored in linguistics (Searle [35]). Searle comes to this
conclusion from introspection, that is, by constructing a conscious and therefore by its very
nature symbolic simulation of intentionality. If a simulation of intentionality is fundamentally
different from intentionality itself, and if a conscious model of intentionality is merely a
simulation of intentionality (rather than the real thing), then we are drawn to the inevitable
conclusion that Searle’s logic of intentionality tells us little about intentionality itself. The
inadequacy then is not in strong AI, which can take any consciously generated symbol-based
model of cognition and turn it into a computer program, but rather with the analytical tools
of cognitive psychology.

Searle argues that a formal program cannot have intentionality, and that intentionality
is a crucial part of cognition. I am in agreement with the latter hypothesis, but in the
former hypothesis Searle exhibits a strong anti-machine bias that he does not defend to
my satisfaction. He is willing to accept that an animal has intentionality because it is the
simplest explanation of its behaviour, but only because it is made of the same “stuff” as we
are; apparent intentional behaviour from a robot is insufficient for him because (Searle [36,
p. 421]):

“. . . as soon as we knew that the behaviour was the result of a formal program,
and that the actual causal properties of the physical substance were irrelevant
we would abandon the assumption of intentionality.”

Searle makes the assumption that intentionality is a property of the “stuff” of biological
organisms, and cannot arise from the “stuff” of computers by execution of a formal program.
We do not know enough of how intentional states are realized in human beings (Searle [35]
considers the question briefly and dismisses it as irrelevant) to be able to say with confidence
that formal programs can never exhibit them. It is reasonable to hypothesize that intentional
states can arise in computational systems that are both sufficiently powerful, and properly
organized. There is no reason to believe that intentional states arise in simple machines
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such as thermostats, and it is a reasonable hypothesis that they do occur in higher primates
and human beings. A reasonable hypothesis is that simple machines lack the computational
power to have intentional states. That proper organization is necessary for intentional states
is a properly conservative view; it is too optimistic to believe that they occur naturally in
any computational system that is powerful enough to exhibit them. The real reason why
computers do not have intentional states is that they are too simple to have them.

Searle is offended by the thought that a mere computer program could have intentional
states, or think. But there is nothing “mere” about a computer program. The task of pro-
ducing correct, fast, and robust software for even simple tasks (such as an airline reservation
system) is incredibly difficult, as anyone who has attempted to write more than “toy” pro-
grams will agree. I have no philosophical problem with the hypothesis that there exists a
program that when executed gives rise to cognition. However, there is a great chasm be-
tween that belief and strong AI. It may be that the program is far too complicated for us to
understand. It may be that, when written as a formal program, it has resource usage that is
beyond the power of the human race to provide. Simply because cognition can be realized in
the brain (in some fashion that we do not yet fully understand) with a reasonable resource
requirement is no reason to believe that its resource requirements as a formal program will
be reasonable too. We have already seen that there is a large overhead in simulating one
machine by another; it is often the case in computational complexity that a program for ma-
chine A requires large overhead to implement on machine B, regardless of whether machine
B simulates the program for A directly, or executes a completely unrelated program that
produces the same results. The overhead of achieving cognition on a computer may be so
large as to render the task impossible.

For example, it is clear that one cannot simulate intentionality by a Chinese Room
algorithm, since such a look-up table must have entries for questions of the form:

“Would you believe that a <noun>1 could be larger than a <noun>2, a <noun>3, a
<noun>4, a <noun>5, a <noun>6, or a <noun>7?”,

or of the form

“Which would you like to see most of all, a <noun>1 a <noun>2, a <noun>3, a
<noun>4, a <noun>5, a <noun>6, or a <noun>7?”.

The previous arguments about the size of the look-up table apply equally well here.
In summary, I believe that intentionality and cognition can in principle be obtained by

executing the appropriate formal symbol manipulation program, but that there are other
barriers that prevent intentionality and cognition from being realized that way in practice.
To draw an analogy, the Principia Mathematica [44] reduces mathematics to symbol manip-
ulation, yet this is not how mathematicians do mathematics. Whilst they freely acknowledge
that it is a necessary condition for any “proof” to be in principle expressable in formal logic,
it is not necessary that it be so expressed. Mathematicians reason informally principally for
the purposes of communication: a human being simply cannot understand a proof of any
great depth and difficulty if it is expressed in symbolic logic. I believe that in the same
sense, the mind can in principle be reduced to a symbol manipulation program, but the
program would be far too long and complicated for human beings to understand (see also
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Campbell [4, p. 109]), and that the reason why we don’t see thinking beings that are “mere
symbol processors” is that the mind reduced to a symbol processing program may be too
greedy of resources to be realized in the physical world.

We must also face the fact that it may not be possible to build a computer that matches
the brain in speed, size, reliability, portability, power consumption, and ease of fabrication.
It may be, as some biologists believe, that biology is the only way to achieve these goals
simultaneously. But perhaps not. Perhaps the brain is the only way that such a compu-
tational device could evolve. It is an open question whether we can devise one ourselves,
independent of the constraints of evolution. It is still an open question as to whether we
could make such a device sentient. I believe that it is not possible given our current state
of technology and current state of knowledge about cognition, but Searle’s arguments have
failed to convince me that such a thing is in principle impossible.

Many believe that neural networks adequately refute Searle’s Chinese Room gedanken-
experiment (see, for example, Churchland and Churchland [5]). Searle dismisses neural net-
works and parallel computation as not bringing anything new to the concept of computation
as it applies to cognition. In a sense he is right; they bring nothing new to the 1950’s style of
computability theory that he uses to bolster his arguments. However, parallel computers are
more efficient at solving some problems than sequential computers are (see Parberry [24]),
and the same can be said of neural networks (see Parberry [25, 27]).

The prime contribution of neural networks is not their mode of computation. The fact
that they use a computational paradigm that differs from the traditional Church-Turing one
is self-evident in some cases, but this is not the death-knell for Computer Science as many
of the proponents of neural networks would have us believe. Theoretical computer science
has dealt with unconventional modes of computation for decades, as we will see later in this
article.

The prime contribution of neural networks is the capacity for efficient computation of
certain problems. The first computers were created in rough analogy with the brain, or more
correctly, in rough analogy with a carefully selected subset of what was known about the
brain at the time. Although technology has advanced greatly in recent decades, modern
computers are little different from their older counterparts. It is felt by some scientists that
in order to produce better computers we must return to the brain for further inspiration.

I believe that it is important to determine which features of the brain are crucial to
efficient computation, and which features are by-products or side-effects of these (see Par-
berry [25, 26]). I do not believe that a computer that is comparable in computing power
to the brain can be obtained by merely simulating its observed behaviour, simply because
the overhead is too great. The general principles of brain computation must be understood
before we try to implement an artificial system that exhibits them.

Computational complexity theory is a powerful technique that can be used to divine some
of the general principles behind brain computation. However, the theory is in its infancy.
Surprisingly, many apparently simple questions about efficient computation turn out to be
difficult and deep. Whilst computational complexity theorists equate exponential resource
usage with intractability and polynomial resource usage with tractability, in real life any
resource usage that grows faster than log-linear in problem size is probably too large to be
of any real use. It remains to develop the tools that can make that fine-grained a distinction

11

I. Parberry, "Knowledge, Understanding, and Computational Complexity",in Optimality in Biological and Artificial Networks?, 
Chapter 8, pp. 125-144, (D.S. Levine, W.R. Elsberry, Eds.), Lawrence Erlbaum Associates, 1997



Inputs from sensors

Outputs to affectors

Figure 3: A finite neural network with 9 nodes and 2 layers.

in resource requirements; for example, we cannot distinguish between problems with time
requirements that intuitively grow exponentially with problem size from those that do not
(see, for example, Garey and Johnson [12]).

Nonetheless, computational complexity theory often gives insights that may have pro-
found philosophical ramifications. For example, many neural network researchers use a
continuous model (i.e. one in which the neurons compute a continuous value). It can be
shown in certain technical senses that if one assumes that neuron outputs are robust to small
errors in precision, then their model is essentially the same as a discrete one within a “rea-
sonable” overhead in resources (Obradovic and Parberry [22, 23]). More importantly, the
same is true even without the assumption of robustness (Maass, Schnitger, and Sontag [19]).

The general framework used by neural network researchers is a finite network of simple
computational devices wired together similarly to the network shown in Figure 3 so that they
interact and cooperate to perform a computation (see, for example, Rumelhart, Hinton, and
McClelland [32]). Yet there is little attention paid to how these finite networks scale to
larger problems. When one designs a circuit to solve a given task, such as performing
pattern recognition on an array of pixels, one typically starts with a small number of inputs,
and eventually hopes to scale up the solution to real life situations. How the resources of the
circuit scale as the number of inputs increases is of prime importance. A good abstraction of
this process is to imagine a potentially infinite series of circuits, one for each possible input
size, and to measure the increase in resources from one circuit in the series to the next (see
Figure 4.
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Figure 4: A neural network family.
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There is an apparent flaw in this abstraction, however. Since for every natural number n,
every Boolean function with n inputs can be computed by a finite Boolean circuit (essentially
by using a look-up table, a formalization of Searle’s Chinese Room), our infinite-family-of-
finite-circuits model can compute any Boolean function, and so violates the Church-Turing
thesis. This can be remedied in one of three ways (among others). Firstly, we could insist
that each finite circuit in the infinite series be similar to its predecessor in the series in
the sense that a Church-Turing computer can compute the differences between the two.
This type of circuit is called a uniform circuit (whereas the former is called a nonuniform
circuit). Secondly, we could insist that the number of processing units in the finite circuits
grows only polynomially with input size. This would avoid the embarrassment of being able
to compute every Boolean function, since it is easy to show by a counting argument that
there are Boolean functions that require exponential size. Thirdly, we could insist that the
structure of each circuit be different from its predecessor, but that there exists a computable
set of circuits in which substantially more than half of the alternatives compute the correct
function. The first solution satisfies the Church-Turing thesis, and the other two do not.
This need not necessarily be a problem: the Church-Turing thesis is a model of reality, and is
not inviolate. The second solution is not particularly desirable, since it can make the design
of the circuits difficult in practice. The third solution is more appealing since although we
may not be able to compute the layout of each circuit, a subset of circuits chosen randomly
from the computable set of alternatives has high probability of turning out a circuit that
works.

Allowing computers access to a random source appears to make them more efficient than
a plain deterministic computer in some circumstances (see, for example, Cormen, Leiserson,
and Rivest [6, Section 33.8]). (Note that this is different from randomly choosing a deter-
ministic algorithm.) In this case, it is sufficient for the algorithm to compute the correct
result with high probability, say 0.999. Surprisingly, such a randomized algorithm can be
replaced with a nonuniform one with only a small increase in resources (Adleman [1]). This
principle can even be applied to probabilistic neural networks such as Boltzmann machines
(Parberry and Schnitger [29]).

Randomness and nonuniformity are two methods for reducing the resource requirements
of algorithms, both of which reach outside the confines of the Church-Turing thesis. The use
of randomness occurred to Turing [42], as did the possibility that the program of the mind
(if it exists) may be far too complicated for us to analyze. He also raised the possibility that
a computer could learn, as does a child. Computational complexity theory has started to ask
questions in this domain with the recent development of computational learning theory (see,
for example, Natarajan [21]). Of prime importance is the probably-approximately-correct,
or PAC model of learning, in which it is sufficient for the system to learn a response that
is with high probability close to the correct answer. Valiant [43] proposed the original
distribution-free PAC learning, and more recent versions include the Universal distribution
(Li and Vitanyi [18]).

The theoretical results described above demonstrate that randomness and continuous
computation do not offer a large increase in efficiency because they can be simulated with a
small increase in resources by discrete, deterministic computation. This does not, of course,
mean that we should use discrete computation to realize neural networks. As discussed
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above, what is small overhead for a theoretician often becomes overwhelming in practice.
Nonetheless, the theoretical results indicate that there is nothing new and alien in probabilis-
tic and continuous computation, and that any philosophy based in them does not necessarily
differ radically from a philosophy based on discrete, deterministic computation, contrary to
all appearances.
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Appendix: 1400 Concrete Nouns
aardvark attic beet bridle cape civet crocodile eye geyser
abacus auditorium beetle brief capillary clam crocus eyeball gibbet
abalone auger bell briefcase capstan clarinet crossbow eyebrow gibbon
abbey auk belt brigade capstone classroom crow eyeglass giraffe
abdomen aurochs bench broadloom capsule claw crown eyelash girdle
abscess aurora berry bronchus car cleat crucible eyelid glacier
accipiter autoclave bezel brontosaurus caravan cliff crucifix falcon gnat
acropolis automobile bib brook carbine clipboard crumb farm gnome
aileron aviary bible broom carbuncle clock crypt farmhouse gnu
aircraft avocado bicep brush carburetor cloister cuckoo faucet goat
airedale avocet bicycle brushfire carnation closet cucumber fawn goldenrod
airfield awl bikini bubble carnival cloud cudgel feather goldfinch
airfoil axe bilge buckboard carp coach cufflink featherbed goldfish
airplane axle billboard bucket carriage coat cup fern goose
airport axolotl billfold buckle carrot cobra cupboard ferret gooseberry
airstrip axon bin buckthorn cart cobweb cushion fiddle gorilla
aisle azalea biplane bud cartwheel cochlea cutlass fiddlestick gourd
alarm baboon birch buffalo cashew cockatoo cuttlebone fig grackle
albatross baby bird buffet casino cockle cuttlefish finch grape
album bacillus birdbath bug cask cocklebur cutworm finger grapefruit
alcove backpack biscuit bugle casket cockleshell dachshund fingernail grapevine
alder backyard bison bulb casserole cockpit daffodil fingerprint gravestone
allele bacterium bittern bulkhead cassette cockroach dagger fingertip graveyard
alley badge blackberry bull cassock cocktail dahlia fir greatcoat
alligator bagel blackbird bulldog castle coconut daisy firecracker greenhouse
almanac bagpipe blackboard bulldozer castor cod dam firefly greyhound
almond balcony bladderwort bullfinch cat codpiece dandelion firehouse grosbeak
aloe ball blade bullfrog catalpa coffeecup dashboard fireplace guillotine
alpenstock ballfield blanket bullock catapult coffeepot deer fish guineapig
alsatian balloon blastula bumblebee cataract coin deerstalker fist guitar
altar ballroom blister bun catbird colander desk flashlight gull
altimeter balustrade blossom bungalow caterpillar collarbone dewdrop flatiron gun
alveolus banana blowfish bunk catfish collard diaper flatworm gyrfalcon
amaranth bandage blueberry bunny cathedral college diary flea gyroscope
amethyst bandstand bluebird buoy catheter collie dictionary fledgling hackberry
amoeba bangle bluebonnet bureau catkin colon dinghy flounder hacksaw
amphibian banister bluefish burette cauldron colt dingo flowchart hailstone
amplifier banjo blueprint bus cauliflower column dinosaur flowerpot hairpin
anaconda bank boa bush cave comb discus flute halibut
anchor bar boar bustard cell comet dish fly hammer
anchovy barbecue board buteo cellar comma dishwasher flycatcher hammock
andiron barbell boardinghouse buttercup cemetery computer distillery foal hamster
anemone barge boat butterfly centaur concertina doberman foot hand
angel barn boathouse buttock centimeter conch dockyard footpath handbag
angelfish barnacle boatyard button centipede condominium dog footprint handgun
angstrom barnyard bobcat buttonhole cerebellum coneflower dogfish footstool handkerchief
ant barometer bobolink buzzard chaise coney doghouse forest hangar
anteater barracuda boil buzzsaw chalkboard conifer doll fork hare
antelope barrel bolster cabbage chameleon continent dolphin forklift harp
antenna barrow bomb cabin chamois cookie donkey fort harpoon
anteroom baseball bongo cabinet chandelier cork door fountain harpsichord
anther basin bonito cable chapel corkscrew doorbell fowl hat
antler basket bonnet cactus chariot cormorant doorknob fox hatchet
anvil basketball bookcase cafe chateau cornfield doorstep foxglove hawk
aorta bass bookend cake check cornflower dormitory foxhole haystack
ape bassinet bookshelf calf checkbook corridor doughnut foxhound hazelnut
apostrophe bat bookstore calliope checkerboard corset dove foxtail headboard
apple bath boomerang callus cheek cortex dragon freeway headlight
appliance bathrobe boson camel cheekbone cotoneaster dragonfly frigate headstone
apron bathroom botfly camellia cheesecake cottage drake frog hedgehog
apse bathtub bottle camera cheesecloth cottonseed dromedary fruit hen
aquarium baton boulder campfire cheetah cottonwood drosophila fungus heron
aqueduct battalion boulevard campground cherry country drum furlong hippopotamus
arachnid battery bouquet campus cherub courtyard duck gadfly hollyhock
arena battlefield bowl can chest couscous duckling galaxy honeybee
ark bayonet bowstring canal chestnut cow dustbin gallberry honeycomb
arm bayou box canary chickadee cowbell eagle gallstone honeydew
armada beach boxcar candelabra chicken cowbird ear galvanometer hoof
armadillo beacon bracelet candle chigger cowslip eardrum gander hornet
armature bead brad candlestick child coyote earphone gannet horse
armchair beak braid candlewick chimney crab earring garage horsefly
armhole beam brain cane chimpanzee crabapple earthworm garden horsehair
armoire bean branch canine chin cradle earwig gardenia horseshoe
armpit bear bratwurst canister chipmunk crane easel garter hourglass
army beaver brazier canker chloroplast cranium echidna gasket house
arrow bed breadboard cankerworm church crankcase eel gate houseboat
arrowhead bedbug breadfruit cannery churn crankshaft egg gauntlet housefly
artery bedpost breakwater cannister cicada crater eggplant gavel huckleberry
artichoke bedroom bream cannon cigar cravat egret gazelle human
ashtray bedspread breast cannonball cigarette crayfish electron gear hummingbird
ass bedspring breastplate canoe cilia crayon elephant gecko hurricane
asteroid bee breastwork cantaloupe cinema credenza elk gene hyacinth
atlas beech brewery canteen cinquefoil creek elm geranium hydra
atom beefsteak brick canyon circus crewel eucalyptus gerbil hydrangea
atrium beehive bridge cap citadel cricket ewe germ hydrant
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hyena loincloth nanometer pearl raccoon sleeve telescope wallaby
ibex lollipop napkin pebble racetrack sleigh television wardrobe
iceberg longhorn nautilus pecan radish slingshot tepee washbasin
icebox loudspeaker navel peccary rainbow sloop termite washboard
icicle louse nebula pelican raindrop sloth tern washbowl
inch lovebird neck pen raisin slug terrapin wasp
infant lowboy necklace penguin rake snail terrier wastebasket
inn lute necktie penny rapier snake textbook watch
insect mace nectarine periscope raspberry snapdragon thermostat watchband
intestine magazine needle periwinkle rat snorkel thesaurus watchdog
iris magnolia nest petal rattlesnake snowball thigh waterfall
jackass magpie net petticoat razor snowflake thimble watermelon
jackboot mailbox nettle pheasant reindeer snowmobile thrip wattle
jackdaw mallet neuron photon retina snowshoe throat weasel
jacket mandrake neutrino piano rhinocerous sock throne whale
jackknife mandrill neutron pickaxe ribbon sofa thrush wharf
jaguar manometer newt pie rickshaw soybean thunderstorm wheelchair
javelin manor nickel pier rifle spade tick whip
jawbone mantlepiece nightcap pig ring sparrow ticket wick
jellyfish maple nightclub pigeon river speedboat tiger widgeon
jockstrap marble nightdress pigeonhole robe spider titmouse wiener
jug mare nightgown pigpen robin spiderwort toad wigwam
kaleidescope marionette nightingale pigtail rock spinnaker toe wildcat
kangaroo marketplace nightshirt pike rook spinneret toenail windmill
keeshond marmoset nit pill rosary spleen toilet window
kerchief marmot noose pimple rose spleenwort tomato wolf
kestrel marquee nose pin rosebud sponge tomb wombat
ketch marrowbone nosebag pinafore rosebush spoon tombstone woodpecker
kettle marten notebook pinball roundworm spore tongue worm
key martini notocord pincushion rowboat squash tonsil wrist
keyboard mastiff nuthatch pine rudder squirrel tooth wristband
keyhole mastodon oak pineapple rutabaga stamen toothbrush wristwatch
keystone mattock oar pinhead sailboat stamp toothpick xylophone
kid mattress oasis pinhole sailfish starfish tornado yacht
killdeer mausoleum ocarina pinion salamander steamboat torpedo yak
kingfisher meadow ocean pinpoint salmon stegosaurus torso yam
kite medal ocelot pinto samovar sternum tortoise yardstick
kitten menu octopus pinwheel sandbag stethoscope tortoiseshell yarmulke
kiwi metronome odometer pion sandpiper stickpin town zebra
knee metropolis omelet pistol sandwich stool trachea zucchini
kneecap midge onion piston sardine stopwatch tractor
knife millipede orange pitchfork sausage stove train
knot minefield orangutan pizza sawfly strawberry tram
koala minesweeper orchard plane sawmill streetcar tray
labrador minibike orchestra planet saxophone streptococcus treadmill
lacewing minicomputer orchid platelet scabbard sunfish tree
ladle minnow organ plowshare scallop sunflower triceratops
lagoon mitten oriole plum scarecrow sunspot trilobite
lake moat oscilloscope polecat scarf swallow trombone
lamb mobcap osprey poncho scorpion swallowtail truck
lamprey moccasin ostrich pond screw swan trunk
landfill mockingbird otter pony sea sweatband truss
lapel mole owl poodle seagull sweater tub
larkspur mollusk ox poppy seahorse sweatshirt tuba
larva mongoose oxcart porch seal swimsuit tulip
larynx monkey oyster porcupine sealion switchblade tuna
lasso moon pacemaker porpoise shallot switchboard tunic
lathe moor paddle possum shark sword turban
laundry moose paddock postcard sheep swordfish turnip
lavatory mop padlock postmark sheepskin swordtail turnpike
leaf mosquito pail pot shinbone sycamore turtle
leaflet moth paintbrush potato shoe synapse turtleneck
leash mothball palace pothole shoehorn syringe twig
lectern motor palette propeller shoelace tablecloth typewriter
leghorn motorcycle palfrey proton shotgun tablespoon tyrannosaurus
legume mound palm pterodactyl shovel tadpole umbrella
lemming mount pamphlet puffball shrew tamarind unicorn
lemon mountain pan puffin shrimp tambourine vacuole
library mouse panda pug shrub tampon valley
lifeboat moustache pansy puma shuttlecock tanager vertebrae
ligament mouth panther pumpkin silkworm tapeworm viaduct
ligature mouthpiece paperback pumpkinseed skate tapir videotape
limousine mudguard paperweight pupil sketchbook tarantula village
limpet muffin papoose puppet ski tarpon vine
lion mulberry parachute puppy skiff taxi viola
lip mule parakeet purse skirt teacart violet
lizard mushroom parrot pushpin skittle teacup violin
llama musket parsnip pussycat skullcap teahouse virus
lobster muskmelon patio python skunk teakettle vise
lock muskox pawn quail skyjack teal vixen
locknut muskrat pea quark skylark teapot volcano
locomotive mussel peach quill skylight teardrop volleyball
locust mustang peacock quilt skyscraper teaspoon vulture
lodge muzzle peanut quince sled tee wagon
log myrtle pear rabbit sledgehammer telephone waistcoat
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