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Abstract

The effectiveness and efficiency of a Hopfield-style neural network recently proposed
by Takefuji and Lee for the knight’s tour problem on an n X n board are compared and
contrasted with standard algorithmic techniques using a combination of experimental
and theoretical analysis. Experiments indicate that the neural network has poor per-
formance when implemented on a conventional computer, and it is further argued that
it is unlikely to improve significantly when implemented in parallel.

Keywords: Knight’s tour problem, neural network, parallel algorithm, Hamiltonian
cycle problem.

1 Introduction

A knight’s tour is a cyclic sequence of moves made by a knight visiting every square of an
n X n chessboard exactly once. The knight’s tour problem is the problem of constructing a
single such tour, given n. Takefuji and Lee [19] (see also Takefuji [18, Chapter 7]) recently
proposed a neural network for the knight’s tour problem. Their paper contains no analysis of
the running time of their neural network (aside from a few tangential and cryptic comments),
nor do they discuss its effectiveness beyond providing some examples of knight’s tours for
boards of size up to 20 x 20. We rectify their omission by comparing their neural network
with conventional algorithms and come to the conclusion that the neural network is neither
effective nor efficient.

Takefuji and Lee’s [19] paper concentrates on finding single knight’s tours on rectangular
boards, but the examples are all square boards. We will make the following restrictions in
order to simplify the presentation of this paper. Firstly, we limit ourselves to square boards,
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Figure 1: The 8 possible moves that a knight on the centre square can make.
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Figure 2: The knight’s graph for an 8 x 8 board.

although it should be noted that the results extend equally well to rectangular boards.
Secondly, for the most part we will consider the problem of generating a single knight’s
tour, however the problem of generating multiple distinct tours will be addressed later in
the paper.

The knight’s tour problem is a special case of the classic Hamiltonian cycle problem.
Recall that a knight can make any of the eight moves described in Figure 1. Define the
knight’s graph for an n x n chessboard to be the graph G' = (V, E) where

Vo= {()1<ij<n)
E o= {((ic) (k,0) | {Ji — Kl.1j — €1} = {1.2}}.

That is, there is a vertex for every square of the board and an edge between two vertices
exactly when there is a knight’s move from one to the other. For example, Figure 2 shows
the knight’s graph for the 8 x 8 chessboard. Then, more formally, a knight’s tour is defined
to be a Hamiltonian cycle on a knight’s graph.

Takefuji and Lee [19] state that they are unsure whether the problem of finding a knight’s
tour is AN"P-complete. (Let P denote the set of problems computable in time at most some
polynomial of the length of their input. The A/P-complete problems are in a certain technical
sense the hardest members of a large and rich class AP of combinatorial optimization



problems. If any AN"P-complete problem were proved to be computable in polynomial time,
then P = N'P. It is widely conjectured that P # N'P; see [9].) However, it is well-known
that the knight’s tour problem cannot be ANP-complete (unless P = N'P). Dudeney |7,
8] contains a description of exactly which rectangular chessboards have knight’s tours; in
particular, an n x n chessboard has a knight’s tour iff n > 6 is even. (It is easy to see that
there can be no knight’s tour when n is odd since such a board has one more white square
than black, or vice-versa, and since the colours of the squares visited on a knight’s tour
must alternate.) This fact appears to be common knowledge in the research community (for
example, the result is stated without references in Cole [3]). Furthermore, there exist several
linear time (i.e. O(n?)) algorithms for constructing knight’s tours (see, for example, Cull [6]
and Schwenk [17]).

The remainder of this paper is divided into four sections. Section 2 describes the Hopfield-
style neural network of Takefuji and Lee and contains an experimental analysis of its effec-
tiveness and efficiency. Section 3 describes a random walk algorithm obtained by combining
two classical techniques due to Euler in 1759 and Warnsdorff in 1823 and contains an exper-
imental analysis of its effectiveness and efficiency. Section 4 describes a divide-and-conquer
algorithm for constructing knight’s tours and contains experimental and theoretical analyses
of its effectiveness and efficiency. Section 5 addresses the significance of the experimental
data, and considers the questions of parallel implementation, and of counting the number of
knight’s tours.

Throughout this paper, IN denotes the set of natural numbers (including zero), Z de-
notes the set of integers, and B denotes the Boolean set {0,1}. The programs used in the
experiments were written in Pascal, compiled using the Berkeley Unix Pascal compiler, and
executed on a SUN SPARCstation 2. The randomized algorithms were implemented using
the standard linear congruential pseudorandom number generator provided in Berkeley Unix
Pascal, seeded with the time of day. The drawings of knight’s tours in the remainder of this
paper were created by processing the tour matrix output of programs that implement the
algorithms with a simple Pascal program that produces IATEX picture environments.

2 The Neural Network

The neural network devised by Takefuji and Lee [18, 19] for the knight’s tour problem uses
O(n?) neurons, one for each edge in the knight’s graph for an n x n board. There is a
bidirectional connection between two neurons whenever the two corresponding edges share
a vertex. Although the architecture is that of a Hopfield network (Hopfield [10]) with all
weights equal to unity, the operation of the neural network differs in the use of a so-called
“hysteresis” term.

More specifically, suppose the squares of the board are numbered 1 through n? in some
manner (for example, row-major order), and let

K ={(i,7) |1 <i<j<n? and there is a knight’s move between squares ¢ and j}.

Takefuji and Lee use a neuron N;; to represent each knight’s move (7,j) € K. Let G(N; ;)
denote the neighbours of neuron N, ; in the interconnection graph of the neural network.
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Figure 3: A configuration that selects these edges will be stable.

That is,
G(Nij) = ANix | (1,k) € K} U{Ny; | (k,j) € K}.

Time is divided into discrete intervals. Each neuron has an internal state and an external
output. If t € N and N is a neuron, let Uy(N) € Z denote the state of neuron N at time ¢,
and Vi(N) € B denote its output at time t. At each time interval one neuron updates its
state and output. Suppose that it is neuron N; ;. The update rule is as follows:

Uni(Nij) = UNig)+2— > Vi),
NEeG(N; ;)
1 if Ut_|_1(NZ'7]‘) >3
Vi (Nij) = 0 if Uy (Niy) <0
Vi(N; ;) otherwise.
A standard Hopfield network would have Vi 1(N;;) = 1 if Uip1(N;;) > 0; the use of the
more restrictive condition U;11(N; ;) > 3 is called a hysteresis term.

Takefuji and Lee’s neural network is carefully constructed to find a subgraph in the
knight’s graph of an n x n chessboard. We say that an edge (¢,j) € K is selected for this
subgraph at time ¢ if V;(¢,7) = 1. The intuition behind the neural network is as follows. A
configuration of the neural network is defined to be a list of the states of all of the neurons.
A configuration is said to be stable if it does not change over time. A close examination
of the above update rules will show that any configuration in which a subgraph of degree
2 is selected is stable. Hence, a knight’s tour will be stable. Unfortunately, other unusual
subgraphs will also be stable, such as the one shown in Figure 3 for a 4 x 4 board.

Takefuji and Lee’s paper describes their neural network by physical analogy using a set
of “equations of motion” (a concept that appears to have originated with Takefuji), instead
of using standard algorithmic concepts and notation as described above. Unfortunately,
they describe neither the initial nor the final conditions. It can be inferred from Takefuji
and Lee’s discussion that their neural network is a randomized algorithm (that is, it gives
different outputs on different executions), but they neglect to describe how this randomness
is achieved. We found that performance similar to that claimed by Takefuji and Lee is
obtained when Vi, 7] is set using a pseudorandom number generator, and Up[z, 7] is set to
zero for all 1 <7 < j < n?® We defined convergence to have occurred when there is no
further change to U. This is a naive definition since it may be the case that U continues
to change, while V' remains fixed (for example, two isolated neurons connected by an edge
will have their U values increase unboundedly while their V' values remain at 1). However,
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Figure 4: The largest knight’s tour (26 x 26) found by Takefuji and Lee’s neural network.

experiments showed that the following more sophisticated definition of convergence did not
appear to improve the network’s performance. A neuron (¢,7) is stable at time ¢ if either
Vili, 7] = 1 and Upqli, 7] > Ui, 5], or Vi[i,j] = 0 and Uiq[e, 5] < Uife, 5]. The network is
said to have weakly converged at time ¢ if all neurons are stable.

Another detail not described by Takefuji and Lee is the update schedule used in their
simulations. Standard Hopfield networks are guaranteed to converge if they are updated in
sequential mode (one neuron at a time) but may not do so when updated in parallel mode (all
neurons updated simultaneously in lock-step). Unfortunately, the hysteresis term destroys
this guarantee of convergence (either regular or weak) in sequential mode. Experiments in
parallel mode failed to converge almost all of the time, but experiments in sequential mode
showed that convergence occurs often enough to generate knight’s tours for small n. We
therefore chose to update the neurons sequentially in the following order: for each square s
of the board in row-major order, the neurons representing moves out of s are updated in some
convenient order. The period taken to update every neuron once in turn is usually termed
an epoch in neural network terminology. Since Takefuji and Lee reported that the average
number of epochs was around 100 in their simulations, we abandoned any computation that
proceeded beyond 1000 epochs, thus avoiding computations that became locked in a cycle.
Some quite long cycles were observed in practice, unlike many other variants of Hopfield
networks (see, for example, Bruck and Goodman [2]. Poljak and Sura [16], Poljak [15] and
Odlyzko and Randall [12]).

We were able to use Takefuji and Lee’s neural network to find knight’s tours on an n x n



‘ n ‘ trials ‘ success ‘ failure ‘ diverge ‘ time ‘
6 | 20000 6103 13561 336 | 7.6 min
8 | 20000 3881 15744 375 | 26.6 min

10 | 20000 2676 16827 497 | 1.2 hr
12| 20000 1394 17922 684 | 2.6 hr
14 | 20000 703 18390 907 | 5.0 hr
16 | 20000 305 18618 1077 | 9.3 hr
18 | 20000 147 18644 1209 | 15.7 hr
20 | 20000 65 18516 1419 | 22.7 hr
22 | 40000 44 36817 3139 | 3.0 day
24 | 40000 10 36339 3651 | 4.4 day
26 | 40000 1 35570 4429 | 5.5 day

Table 1: Results of experiments with Takefuji and Lee’s neural network on an n x n board.
Columns list from left to right n, the number of experiments, the number of experiments
that converged to knight’s tours, the number of experiments that converged to non-knight’s
tours, the number of experiments that appeared to diverge, and the total amount of CPU

time used.

Table 2: Results of experiments with Takefuji and Lee’s neural network on an n x n board.
Columns list from left to right n, the percentage of experiments that converged to knight’s
tours, the percentage of experiments that converged to non-knight’s tours, the percentage of
experiments that appeared to diverge (note that these may not sum to 100% due to rounding

n ‘ success ‘ failure ‘ diverge ‘ time
6 30.5% | 68.0% 1.7% | 0.08 sec
8 19.4% | 78.7% 1.9% | 0.4 sec

10 13.4% | 84.1% 2.5% | 1.6 sec

12 7.0% | 89.7% 3.4% | 6.6 sec

14 3.5% | 92.0% 4.5% | 25.5 sec

16 1.5% | 93.1% 5.4% | 1.8 min

18 0.7% | 93.2% 6.0% | 6.4 min

20 0.3% | 92.6% 7.1% | 20.9 min

22 0.1% | 92.0% 7.9% | 1.7 hr

24 0.03% | 90.9% 9.1% | 10.4 hr

26 | 0.003% 88.9% 11.1% | 5.5 day

errors), and the average amount of CPU time needed to find a tour.
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Figure 5: Success rate for Takefuji and Lee’s neural network as a percentage of the number
of experiments, shown with a log scale on the Y-axis.
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Figure 6: Average running time required for Takefuji and Lee’s neural network to find a
single knight’s tour, shown with a log scale on the Y-axis.



board for all even 6 < n < 26 (for example, Figure 4 shows a knight’s tour on a 26 x 26
board). Takefuji and Lee report being able to generate knight’s tours for n only as large as
20, and do not give any data on the success rate or running time of their neural network. The
raw data from our experiments is summarized in Tables 1 and 2. The networks appeared to
converge 90% of the time. However, as can be seen from Figures 5 and 6, the neural network
technique scales very poorly. The experimental evidence indicates that number of successes
decreases exponentially with n, and that the expected running time (defined to be the average
amount of time required to generate a single knight’s tour) increases exponentially with n.
Note that the figures for the larger values of n are progressively less significant due to the
paucity of solutions. Based on this empirical evidence, we consider it very unlikely that
Takefuji and Lee’s neural network can be used to find a knight’s tour for n = 30 even with
a one-thousandfold increase in computing power.

3 A Random Walk Algorithm

Rouse Ball and Coxeter [1] describe an interesting random walk algorithm which they at-
tribute to Euler. This algorithm starts at any square and repeatedly makes a knight’s move
to a random unvisited square until no further progress can be made. This leaves a possibly
large number of unvisited squares (which we will call holes). The holes are then patched
by stringing them together using knight’s moves whenever possible, and then attempting to
insert the strings of holes into the tour by deleting a move and replacing it with one of the
strings. The tour is then closed, if possible.

There is a similar random walk algorithm that proceeds by making random moves chosen
using an interesting heuristic. Instead of choosing a completely random move, the algorithm
chooses a move at random from the set of moves that lead to a square that has remaining
the smallest number of legal moves to an unvisited square. This heuristic is attributed to
Warnsdorfl in 1823 by Conrad, Hindrichs, Morsy, and Wegener [4, 5]. The latter paper adds
the heuristic to the standard backtracking algorithm for knight’s tours.

We experimented with a random walk algorithm that uses both the technique of Euler and
that of Warnsdorff. The result of the experiments appear in Table 3. Although the success
rate appears to decreases exponentially with n (see Figure 7), and the average running time
required to find each tour appears to increase exponentially with n (see Table 8), the random
walk algorithm clearly outperforms Takefuji and Lee’s neural network by several orders of
magnitude. The largest knight’s tour that we were able to find using the random walk
algorithm was 78 x 78, which is considerably larger than the 26 x 26 tour, which was the best
that the neural network could do even with the investment of considerably more running
time. Figure 9 shows a 60 x 60 knight’s tour found by the random walk algorithm.

4 A Divide-and-Conquer Algorithm

There exist many conventional algorithms for constructing knight’s tours (see, for example,
Cull [6] and Schwenk [17]). A particularly elegant divide-and-conquer algorithm proceeds as
follows. To construct a knight’s tour on an n X n or n X (n 4+ 2) board, divide it into four



‘ n ‘ trials ‘ success | percent time average
6 | 10000 9206 92.1 41 sec | 0.005 sec
8 | 10000 9284 92.8 | 1.3 min | 0.008 sec

10 | 10000 9527 95.3 | 1.9 min | 0.012 sec
12 | 10000 9604 96.0 | 2.8 min | 0.018 sec
14 | 10000 9496 95.0 | 4.0 min | 0.025 sec
16 | 10000 9211 92.1 | 5.3 min | 0.034 sec
18 | 10000 8325 83.3 | 6.8 min | 0.049 sec
20 | 10000 6840 68.4 | 8.4 min | 0.074 sec
22 | 20000 10125 50.6 | 20.4 min | 0.12 sec
24 | 20000 7322 36.6 | 23.1 min | 0.19 sec
26 | 20000 5079 25.4 | 26.0 min | 0.31 sec
28 | 20000 3438 17.2 1 29.4 min | 0.51 sec
30 | 20000 2360 11.8 | 33.2 min | 0.81 sec
32 | 20000 1608 8.0 | 36.6 min 1.4 sec
34 | 20000 1024 5.1 | 40.2 min 2.4 sec
36 | 20000 692 3.5 | 44.6 min 3.9 sec
38 | 20000 482 2.4 | 49.0 min 6.1 sec
40 | 20000 336 1.7 | 53.4 min 9.5 sec
42 | 20000 213 1.1 | 58.0 min | 16.3 sec
44 | 20000 141 0.7 1.1 hr 26.9 sec
46 | 20000 99 0.5 ] 1.2hr 41.8 sec
48 | 20000 62 0.31 1.3 hr 1.2 min
50 | 20000 36 0.18 | 1.4 hr 2.3 min
52 | 20000 24 0.12 | 1.5 hr 3.7 min
54 | 20000 22 0.11 1.6 hr 4.3 min
56 | 20000 12 0.06 | 1.7 hr 8.3 min
58 | 20000 16 0.08 | 1.9 hr 7.3 min
60 | 20000 7 0.04 | 1.9 hr 8.1 min
62 | 20000 4 0.02 | 2.0 hr 30 min
64 | 20000 3 0.015 | 2.1 hr 42.3 min
66 | 20000 3 0.015 | 2.3 hr 45.1 min

Table 3: Results of experiments with random walk algorithm on an n xn board. Columns list
from left to right n, the number of experiments, the number of experiments that successfully
generated knight’s tours, the percentage of experiments that generated knight’s tours, the
total amount of CPU time used, the average amount of CPU time needed to find a tour.
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Figure 7: Success rate for the random walk algorithm as a percentage of the number of
experiments, shown with a log scale on the Y-axis.

11



CPU Time (seconds)

1le+03 )-/"'

orop Vel

let+01
1e+00

le-01 ,/
le-02 /

~

20.00 40.00 60.00

Figure 8: Average running time required for the random walk algorithm to find a single
knight’s tour, shown with a log scale on the Y-axis.
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Figure 9: A 60 x 60 knight’s tour found by the random walk algorithm.
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Figure 10: A 16 x 16 knight’s tour constructed from an 8 x 8 knight’s tour using a divide-
and-conquer algorithm.

even-sided quadrants, construct a tour in each of the four quadrants, and then patch the four
independent tours together to form a single tour. The base of the recursion consists of 6 X 6,
6x8, 8x8, 8x10 and 10x 12 tours with a particular pattern of moves near the corners needed
to facilitate the patching together of tours. The technical details are described more formally
in Parberry [14, 13]. Figure 10 illustrates the technique on a 16 x 16 board, constructed
from four copies of the knight’s tour on an 8 x 8 board. Figure 11 illustrates the technique
on a 60 x 60 board.

The running time T'(n) required for the divide-and-conquer construction of a knight’s
tour on an n X n board is given by the following recurrence: T'(8) = O(1), and for n > 16 a
power of 2, T'(n) = 4T (n/2) + O(1). This recurrence has solution T'(n) = O(n?). Therefore
(using the standard argument), the running time for all even n > 6 is O(n?), that is, linear
in the number of squares on the board. The divide-and-conquer algorithm is particularly
easy to implement, and can be used to construct knight’s tours of size up to 1000 x 1000
in under 11 seconds. The running time for the construction of a knight’s tour on an n x n
board for 10 < n < 1000 is shown in Figure 12.

5 Analysis of Results

The experimental data presented thus far in this paper clearly indicate that the neural
network is inferior to standard algorithmic techniques when implemented on a conventional
computer. However, Takefuji and Lee [19] state that the major advantage of their neural
network algorithm for the knight’s tour problem is that it is a parallel algorithm. They do not
state explicitly why it is important to have a parallel algorithm, but one of the more obvious
effects of parallelism is an increase in computation speed. Nor do they indicate exactly how
the neural network is to be run in parallel. The operation of the neural network is inherently
sequential with one neuron update per cycle. However, proper behaviour can still be obtained
when allowing multiple neuron updates in parallel provided no two edges that have a vertex
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A 60 x 60 knight’s tour constructed from the smaller knight’s tours using a

divide-and-conquer algorithm.

Figure 11:
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Figure 12: Running time required for the divide-and-conquer algorithm to find a single
knight’s tour.
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‘ Architecture ‘ Time ‘ Processors ‘

Hypercubic network O(n?*/p) | p= O(n*/logn)
CREW PRAM o(1) n2

Mesh O(n?/p?) p < n?3
Mesh with CREW buses O(1) n?

Table 4: Summary of major parallel algorithms.

in common are updated simultaneously. Each epoch can therefore be realized in parallel in
16 rounds (two for each of the 8 types of knight’s move). This reduces the time required for
each epoch from O(n?) on a sequential computer to O(1) on a parallel computer, and hence
reduces overall running time by a factor of O(n?). However, the experimental evidence in
Section 2 indicates that the expected time to generate an n x n knight’s tour is exponential
in n?, that is, as large as 20("*) This implies that the parallel implementation of the neural
network will also take exponential time.

In sharp contrast, the divide-and-conquer algorithm is particularly amenable to parallel
implementation in running time proportional to the diameter of the parallel machine, which
can loosely be defined as the maximum amount of time needed to pass a message from
one processor to another. A theoretical analysis of the parallel version of the divide-and-
conquer algorithm is provided in Parberry [14, 13]. In that paper, four different types of
parallel architecture are considered, the hypercubic network, the PRAM, the mesh-connected
computer, and the mesh with row and column buses. The results are summarized in Table 4.

On first thought, it appears that the neural network and random walk algorithms still
have one advantage over the divide-and-conquer algorithm: they can be used to generate
a large number of knight’s tours, and hence enable the determination of a lower bound on
the number of knight’s tours of a given size. Let 7, denote the number of distinct (though
possibly isomorphic) knight’s tours on an n x n board. A standard backtracking algorithm
can be used to verify that 75 = 9,862, but determination of lower bounds on 7, for n > 6
require more sophisticated techniques. The neural network or random walk algorithm can
be used to derive a lower bound on 7, by generating a large set of tours and removing
duplicates. The random walk algorithm is the obvious choice since our earlier experiments
have shown that it is clearly the more efficient of the two. We performed initial experiments
as follows. The random walk algorithm was used to generate 100,000 knight’s tours of each
size. Duplicates were then removed using the Unix utility sort -u, and number of lines were
counted using wc -1. Preliminary experiments found, for example, that 739 > 95,006, and
Try > 95,902.

However, much better bounds can be found for general n using the recursive algorithm.
For example, it can be shown that the the divide-and-conquer algorithm can generate at least
5.5 x 107 tours on 12 x 12 boards, which implies that 7y, > 5.5 x 10'7. This is much larger
than the naive lower bound 775 > 95,902 obtained in the previous paragraph. It is true that
the neural network could be used to prove a similar lower bound, but this would require more
disk space than is technologically feasible (even at one byte per tour, it would require more
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than 10® gigabytes). A more sophisticated argument using the divide-and-conquer algorithm
can also be used to show an asymptotic lower bound of 7, = Q(1.35”2) (Kyek, Parberry, and
Wegener [11]).

6 Conclusion

Neural networks research has progressed to the point at which the mere fact of existence of a
neural network solution for a problem is no longer interesting. Long term interest in neural
network research can only be sustained if neural networks can compete with conventional
algorithm design techniques. A new algorithm is significant if it can be demonstrated be-
yond reasonable doubt to be more practical, more effective, or more efficient than existing
techniques. We have found that this is not the case for a neural network for the knight’s tour
problem, neither for finding single tours sequentially or in parallel, nor for finding bounds
on the number of tours. To quote Samuel Johnson in another context, a neural network for
the knight’s tour problem

...1s like a dog’s walking on its hinder legs. It is not done well; but you are
surprised to find it done at all.

Acknowledgements

The author is indebted to Edwin Clark, Kevin Ford, and Rolf Wanka for helping with

references, to Mike Sluyter for implementing the random walk algorithm.

References

[1] W. W. Rouse Ball and H. S. M. Coxeter. Mathematical Recreations and Essays. Uni-
versity of Toronto Press, 12th edition, 1974.

[2] J. Bruck and J. W. Goodman. A generalized convergence theorem for neural networks
and its applications in combinatorial optimization. In Proc. IEEE First International
Conference on Neural Networks, volume II1, pages 649-656, San Diego, CA, June 1987.

[3] C. Cole. The rec.puzzles Frequently Asked Questions List. Version 3, available
by anonymous ftp from rtfm.mit.edu in /pub/usenet/news.answers/puzzles-fagq,
1992.

[4] A. Conrad, T. Hindrichs, H. Morsy, and 1. Wegener. Wie es dem springer gelang,
schachbretter beliebiger groesse und zwischen beliebig vorgegebenen anfangs- und end-
feldern vollstaendig abzuschreiten. Spektrum der Wissenschaft, pages 10-14, February
1992.

[5] A. Conrad, T. Hindrichs, H. Morsy, and [. Wegener. Solution of the knight’s Hamiltonian
path problem on chessboards. Discrete Applied Mathematics, 50:125-134, 1994.

18



[6] P. Cull and J. DeCurtins. Knight’s tour revisited. Fibonacci Quarterly, 16:276-285,
1978.

[7] H. E. Dudeney. Amusements in Mathematics. Thomas Nelson & Sons, 1917.
[8] H. E. Dudeney. Amusements in Mathematics. Dover Publications, 1970.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[10] J. J. Hopfield. Neural networks and physical systems with emergent collective compu-
tational abilities. Proc. National Academy of Sciences, 79:2554-2558, April 1982.

[11] O. Kyek, I. Parberry, and 1. Wegener. Bounds on the number of knight’s tours. Unpub-
lished Manuscript, 1994.

[12] A. M. Odlyzko and D. J. Randall. On the periods of some graph transformations.
Complex Systems, 1:203-210, 1987.

[13] 1. Parberry. Algorithms for touring knights. Technical Report CRPDC-94-7, Center for
Research in Parallel and Distributed Computing, Dept. of Computer Sciences, Univer-
sity of North Texas, May 1994.

[14] 1. Parberry. Efficient sequential and parallel algorithms for the knight’s tour problem.
Unpublished Manuscript, 1994.

15| S. POIJELk Transformations on I’ELphS and COHVGXity. COmpl&f Systems, 11021*1033,
g

[16] S. Poljak and M. Sura. On periodical behaviour in societies with symmetric influences.
Combinatorica, 3(1):119-121, 1983.

[17] A. J. Schwenk. Which rectangular chessboards have a knight’s tour?  Mathematics
Magazine, 64(5):325-332, 1991.

[18] Y. Takefuji. Neural Network Parallel Computing. Kluwer Academic Publishers, 1992.

[19] Y. Takefuji and K. C. Lee. Neural network computing for knight’s tour problems.
Neurocomputing, 4(5):249-254, 1992.

19



Biography

Dr. Ian Parberry is an Associate Professor on the faculty of the Computer Sciences De-
partment at the University of North Texas, where he is also Director of the Center for
Research in Parallel and Distributed Computing and a member of the Center for Network
Neuroscience. His research interests include theoretical computer science, parallel comput-
ing, and neural networks. He is a member of the Association for Computing Machinery, the
ACM Special Interest Group on Algorithms and Computation Theory, the IEEE Computer
Society, the IEEE Technical Committee on Mathematical Foundations of Computing, the
European Association for Theoretical Computer Science, and the International Neural Net-
work Society. He is the author of three books, Parallel Complexity Theory (Pitman, 1987),
Circuit Complexity and Neural Networks (MIT Press, 1994), and Problems on Algorithms
(Prentice Hall, 1995). He is an Editor of Information and Computation, an Associate Editor
of Journal of Computer and System Sciences, and the Editor of ACM SIGACT News.

20



