
Algorithm Explorer: Visualizing Algorithms in a 3D
Multimedia Environment

[Extended Abstract]

Erik Carson
Department of Computer
Science & Engineering

University of North Texas
Denton, TX, USA

carson@cs.unt.edu

Ian Parberry
Department of Computer
Science & Engineering

University of North Texas
Denton, TX, USA

ian@unt.edu

Bradley Jensen
Department of Information

Technology & Decision
Sciences

University of North Texas
Denton, TX, USA

jensenb@unt.edu

ABSTRACT
Computer science courses have increasingly made use of vi-
sualization tools to illustrate common algorithms. This pa-
per describes Algorithm Explorer, an educational tool de-
signed for use by instructors and students to examine algo-
rithms in a rich environment composed of 3D data represen-
tations, 3D audio cues, and easy-to-use controls. Instructors
and students can easily add calls to Algorithm Explorer’s
C++ API to their programs to quickly develop engaging vi-
sualizations, and every detail of the scene can be customized
as the developer desires.

Categories and Subject Descriptors
K.3.2 [Computing Mileux]: Computers and Education-
Computer and Information Science Education[Computer sci-
ence Education]

General Terms
Design, Experimentation

Keywords
Algorithm animation, visualization

1. INTRODUCTION
Algorithm Explorer is an educational tool designed to

help computer science students visualize many common al-
gorithms used in a standard computer science curriculum.
The tool consists of a Microsoft Windows application for
viewing and manipulating visualizations, a C++ API for
developing visualizations in Microsoft Visual Studio, and
an add-in for Microsoft Visual Studio that supplements the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07, March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-259-3/06/0003 ...$5.00.

API and simplifies the development process. The visual-
izations themselves are rich multimedia presentations im-
plemented using DirectX 9.0 and feature three-dimensional
representations of common data structures, animation of
common operations, context-sensitive tracing of source code
or pseudocode, and support for sound effects that reinforce
the animation. Algorithm Explorer is highly customizable
on both the user and developer levels. Developers can set
parameters for the colors, textures, lighting, and sound ef-
fects for various structures, operations, and events. Users
can view these scenes as developed or override these with
their own customizations at runtime.

Instructors can use Algorithm Explorer as a primary tool
for presenting algorithms or as a supplement to textbooks,
slide shows, and other traditional forms of presentation.
Students can use Algorithm Explorer’s graphical interface
to view visualizations provided by their instructor. They
can also use the C++ API as a comprehensive aid and a
debugging tool when developing or working with C++ im-
plementations of common algorithms.

The main part of this paper is divided into three sections.
Section 2 describes prior work and compares and contrasts
it with Algorithm Explorer. Section 3 describes Algorithm
Explorer in more detail from the user and programmer per-
spectives. Section 4 contains two examples of algorithm vi-
sualization code using Algorithm Explorer.

2. PRIOR WORK
Several systems already exist for visualizing algorithms,

each with its own philosophy and range of application. This
section briefly examines several systems and reflects on their
merits, drawbacks, and influences on Algorithm Explorer.

2.1 Tango, XTango, Polka, and Samba
Stasko developed the Tango framework for algorithm ani-

mation in 1990 [8]. In XTango (the X11 Window implemen-
tation of Tango), animations consist of a control file that
contains graphics instructions grouped into events that cor-
respond to key parts of the algorithm [9]. The developer
interleaves XTango API calls into a C implementation of
the algorithm. With enough effort, an animation designer
can create almost any imaginable 2D or 2.5D representation
using primitive drawing and animation operations. How-

ever, such animations require explicit placement and low-
level setup of every component of the animation. Stasko
later developed Polka to visualize parallel algorithms and
Samba to allow designers to build animations via text scripts
[10, 11].

2.2 Animal
In Rößling’s Animal system, animations are built using a

graphical editor [7]. The interface generates a text script
which can then be modified by hand. Like Tango, Animal
can be used to visualize many representations; however, like
Tango, it does so through the composition of low-level draw-
ing and animation operations rather than operations on the
abstract data types represented in the animation; in fact,
Animal animations can be generated without actually im-
plementing the algorithm in code. Animal has specialized
support for displaying code or pseudocode in the animation.
Finally, Animal has a sizable online repository of animations
that can be retrieved through the interface itself [6].

2.3 MatrixPro
The MatrixPro system by Karavirta et al. takes another

approach to algorithm visualization [1]. The user builds an-
imations in a graphical interface by choosing from a menu
of data structures. The user can then use drag-and-drop
operations to manipulate the data structures interactively.
The data structures update themselves according to their
expected behavior. All operations on the scene are recorded
and can be saved to a file for later review. Furthermore,
operations can be layered at different levels of granularity
and played back at any given level, skipping finer steps as
desired. MatrixPro’s primary advantage is that its users can
alter the visualization without the need to recompile or re-
load an animation. However, MatrixPro has no support for
source tracing, and creating new data structures is compli-
cated and requires extensive Java coding on the part of the
designer [5].

2.4 CS Teaching Aids for Visual J# .NET
Microsoft has released visualizations of sorting and recur-

sive algorithms using Visual J# .NET [4]. Visual Studio
.NET is required to build these teaching aids.

The sorting visualization compares two of three basic al-
gorithms for sorting arrays—insertion sort, merge sort, and
selection sort—in parallel using a bar graph representation
of the arrays. The algorithms are compared based on elapsed
time and number of comparisons. While the visualization
includes a description of each algorithm along with source
code, the visualization does not trace the source code as
the program progresses. The recursion visualization demon-
strates several recursive functions by stepping through each
function call and return. The steps are visualized as boxes
on the right side of the window. These boxes contain either
the function’s sole parameter or its return value. Several
common functions (e.g., factorial, Fibonacci) are built into
the program. Both programs can be extended to visualize
other algorithms (within some constraints).

2.5 Jeliot 2000
Jeliot 2000 is a Java programming environment that au-

tomatically animates a subset of Java source code [3]. Je-
liot 2000 animates Java code on a very low level, displaying
every Java instruction (e.g., comparison, addition) and cre-

ating stack frames for method calls. Arrays are visualized in
their own panel, and array indices are visualized as arrows
pointing to the appropriate element. Jeliot 2000 seems more
suited to an introductory programming course; an under-
graduate algorithms course usually views data structures on
a more abstract level. Jeliot 2000 works with most of Java’s
language elements, but it cannot visualize objects other than
strings, making it unsuitable for viewing, for example, high
level graph operations. Jeliot provides few options for cus-
tomizing the animation apart from play speed and fonts.

2.6 BlueJ
BlueJ is a visual programming environment designed for

introductory courses in object-oriented programming using
Java [2]. While not specifically an algorithm visualization
system, BlueJ does visually represent all of the classes and
instances that make up a Java application, including Java
API classes. Rather than developing linear programs that
run from a static main function, users of BlueJ write func-
tions that can be called at will from the interface. Like
Jeliot, the visualization is too low-level to visualize abstract
data types such as graphs and trees without considerable
coding. However, the system is excellent for visualizing ob-
jects at the class level.

3. DESCRIPTION
Algorithm Explorer addresses a number of problems with

previous efforts at visualization:

• Developers can create visualizations for algorithms in
less time than they spent implementing the algorithms
themselves, though further effort can refine a visual-
ization’s audio-visual aspects.

• Visualizations are high-level, on par with the data
structure itself (e.g., heap) or the underlying imple-
mentation (e.g., array used to implement a heap) as
desired.

• Any algorithm that can be represented by a combina-
tion of blocks, arrays, call stacks, and graphs can be
visualized with Algorithm Explorer.

• Visualizations support source tracing, and the add-in
for Visual Studio .NET 2005 automates much of the
source-tracing process.

• The visualizations are very media-rich. 3D graph-
ics, 3D audio, and smooth animation all combine to
make a more immersive visualization experience for
the learner.

Algorithm Explorer is used on two levels—by the user
interacting with the visualizations and by the programmer
creating visualizations. The user sets different visualization
parameters using the GUI controls and plays visualizations.
The programmer uses Algorithm Explorer’s C++ API calls
to construct and configure visualizations. The user inter-
face is built on top of the programmer interface, so the pro-
grammer can have as much or as little control over the user
interface as desired.

3.1 User Interface
The visual interface of Algorithm Explorer consists of a

top-level application window with the following child com-
ponents:

• a viewer panel that displays the currently loaded visu-
alization scene at the current time

• a play control panel that controls the progression of the
visualization in a manner analogous to the controls of
a compact disc player

• a speed panel that controls the speed of the visualiza-
tion

• an option panel containing controls for altering vari-
ous parameters of the visualization such as lighting,
projection, sound, and rendering states

• a menu bar containing the commands for working with
visualization files, viewing the help files, and showing
or hiding the various panels

The user interface can be in one of two visual modes.
In standard mode, all of the components are visible. In
fullscreen mode, all components except the viewer panel are
hidden, and the viewer panel is expanded to fill the entire
screen. The user can switch between standard and fullscreen
modes with a shortcut key.

The primary device for interacting with these controls is
the mouse. However, the user can also use keyboard com-
mands to adjust the controls in a manner similar to that
used in other Windows applications (e.g., pressing ALT and
an alphabetic key to select a control).

3.1.1 Viewer Panel
The viewer panel is a viewport into a Direct3D scene dis-

playing the currently loaded visualization at the current
time. During playback, the graphical portion of the vi-
sualization will be animated here. In standard mode, the
user can resize the viewer panel by resizing the window; the
viewer panel expands to fill the extra space. In fullscreen
mode, this panel fills the entire screen. The user can use
the mouse to navigate the scene in arc-ball fashion, zoom in
and out, and reset to the default view.

3.1.2 Play Control Panel
The play control panel allows the user to visualize different

moments in visualization time. The panel consists of a row
of play control buttons, a time scrollbar, and a step scrollbar.

The buttons afford playing, pausing, and traversing the
visualization similarly to the buttons on a conventional com-
pact disc or digital video disc player. Using these buttons,
the user can play, stop, pause, and resume the visualiza-
tion; move backward or forward by a step; or jump to the
beginning or end of the visualization.

The time and step scrollbars indicate and control the cur-
rent moment in visualization time. By sliding one of the
scrollbars’ thumbs, the user can navigate the visualization
in clock time or steps. Text labels beside each scrollbar in-
dicate the current step and moment in time.

3.1.3 Speed Panel
The speed panel consists of a slider allowing the user to

adjust the speed factor of the visualization. By default,
the speed factor is 1.0, indicating that all times specified
in the visualization are exact; for example, if the visual-
ization indicates a three second delay between steps, then
the visualization will pause for three seconds between steps
when playing. Sliding the speed slider’s thumb to the left
or right decreases or increases the speed factor respectively,
thus slowing down or speeding up playback. A text label
in the panel displays the current speed factor, and a button
resets the speed factor to the default value.

3.1.4 Option Panel
The option panel contains a number of controls for adjust-

ing various parameters for visualizing the scene. For exam-
ple, the user can clear or check boxes that enable lighting,
wireframe rendering, or orthogonal projection; or the user
can use a color picker to change the color of all highlighted
edges in a graph.

3.1.5 Main Menu
The main menu bar contains commands for opening and

closing files, viewing the Algorithm Explorer documentation
files, and modifying the interface itself by showing and hid-
ing various panels. Additionally, any other useful commands
that don’t logically fall into the above panels are included
in the main menu.

3.2 Scene Development Interface
The scene development interface consists of two parts:

a C++ Application Programming Interface (API) and a
helper add-in for Visual Studio .NET 2005.

3.2.1 C++ API
The C++ API contains all of the functionality needed

to create scenes for use with Algorithm Explorer. Thus,
existing programs used to demonstrate algorithms can be
easily modified to produce visualizations.

The Explorer interface class provides access to the user
interface and (if any) the currently loaded visualization. Vi-
sualizations can be developed independently of the user in-
terface and saved to a file, or they can be generated on-
the-fly and passed to the Explorer interface for immediate
visualization. Saved visualizations can be retrieved either
by the user application or the API.

The developer can manipulate the visualization itself via
a Scene interface and a number of interfaces to the scene’s
components (e.g., data blocks, arrays, source code listings).
These interfaces are organized into core components and
components of three different scene types:

• Block World is used to visualize operations on indi-
vidual data blocks or arrays represented by 3D boxes.
The boxes can be configured to either contain a 3D
text mesh representing their value or scale along one
or more dimensions in proportion to their value.

• Graph World visualizes operations on graphs, which
are represented by spherical nodes, curved edges, and
3D text representing the names and/or values attached
to these components.

• Stack World illustrates recursion and general function
tracing through a dynamically resizing stack of con-
tainers, each with its own set of components.

Of course, these types of scene can overlap; a single visual-
ization can have elements from all three worlds at the same
time.

The API operations used to generate steps in a scene typ-
ically either (a) update the data values of components to
match changed data or (b) mirror the original data oper-
ations used to implement the algorithm. For instance, in-
crementing a data block with the ++ operator generates a
step that visualizes a variable incrementing by one. A num-
ber of common procedures are also implemented for con-

Figure 1: Visualizing a function with the add-in

1 void bubbleSort (int ∗a , int l en)
2 {
3 for (int j = len −1; j >= 0 ; −−j)
4 for (int i = 0 ; i < j ; ++i)
5 i f (a [i] > a [i +1])
6 std : : swap<int>(a [i] , a [i +1]) ;
7 }

Figure 2: A bubble sort function

venience, such as swapping the contents of two data com-
ponents. These operations are fully animated, expressed
through the movement of components or their values, sound
effects, change in lighting, or any combination of the above.
While default behaviors are provided so that the scene is
highly immersive without much effort from the developer,
the developer is free to modify any behaviors as desired.

3.2.2 Visual Studio add-in
To further aid in scene development, Algorithm Explorer

comes with a helpful add-in for Visual Studio. The add-in
can automatically add code to a C++ project that initial-
izes Algorithm Explorer and sets up an empty scene. The
add-in can also implement some of the scene building code
for selected functions automatically. By choosing “Visual-
ize” from the Algorithm Explorer context menu on a func-
tion header, the add-in will create a copy of the function
with a modified name and an additional SceneCreator pa-
rameter representing the scene to be constructed. In addi-
tion, if source tracing is enabled in the add-in options, the
add-in creates a third function that adds a visual compo-
nent representing the original function’s source code to the
scene. The developer can manipulate this component using
the SourceBlock interface.

4. EXAMPLES
Figure 2 shows a typical bubble sort implementation, and

Figure 3 shows the same implementation with scene-building
code. Some of the code, such as the extra parameter for the

1 void bubbleSort ax (int ∗a , int len ,
2 SceneCreator scene)
3 {
4 BlockArray a ax =
5 scene . getBlockArray (”a” , a , l en) ;
6 Block j ax = scene . getBlock (” j ”) ;
7 Block i a x = scene . getBlock (” i ”) ;
8 scene . beginScene () ;
9 int j ;

10 for (j = len −1, j ax = j ; j >= 0 ;
11 −−j , j a x = j)
12 {
13 int i ;
14 for (i = 0 , i a x = i ; i < j ;
15 ++i , i a x = i)
16 {
17 a . h i g h l i g h t (i , j) ;
18 i f (a [i] > a [i +1])
19 {
20 std : : swap<int>(a [i] , a [i +1]) ;
21 a ax . swap (i , i +1);
22 }
23 }
24 }
25 }

Figure 3: Generating a visualization for bubble sort

SceneCreator interface, can be automatically generated by
the Visual Studio add-in. The rest of the code consists of
calls that create visual representations of the data involved
followed by operations that update these representations.

Figure 5 constructs a visualization of a standard algorithm
used to extract the lowest value from a min-heap. The code
assumes the existence of a class named MinHeap which imple-
ments the heap as a member array elems of 2k −1 elements,
where k is the maximum number of levels in the heap; a
counter size tracking the number of elements in the heap;
and visualizations for these data elements. Additionally,
MinHeap contains a member variable stack representing a
function call stack. While this function is iterative, a stack
provides built-in support for visualizing return values after
a function ends. In addition, a larger scene could call this
function (and others) many times, so a stack component
keeps the visualization area tidy.

An interesting feature of this implementation is that the
visualization can be that of the array-based implementation
(as in Block World) or the heap itself (as in Graph World)
depending on the interface used to define the member vari-
able elems_ax in MinHeap. If elems_ax is a BlockArray

interface, the visualization is that of an array of blocks
containing the heap’s elements. However, if elems_ax is a
BinaryHeap interface, the visualization is that of a balanced
binary tree. Both interfaces can be manipulated by using
the subscript operator [] to indicate the node index. Thus,
the scene developer can switch from low-level to high-level
visualization by merely replacing the type of elems_ax and
uncommenting a line.

5. CONCLUSION
Compared to prior algorithm animation systems, Algo-

rithm Explorer provides richer visualizations that take bet-
ter advantage of modern 3-D graphics and audio technology.

Figure 4: A bubble sort visualization

These visualizations are designed to improve students’ learn-
ing experience by creating a more engaging and immersive
environment. At the same time, the development API, with
the aid of the Visual Studio add-in, is designed to fit neatly
into existing algorithm projects with minimal training and
effort on the part of the visualization designer.

This research was funded by a grant from Microsoft Cor-
poration.

6. REFERENCES
[1] V. Karavirta, A. Korhonen, L. Malmi, and St̊alnacke.

MatrixPro: A tool for on-the-fly demonstration of
data structures and algorithms. In Proceedings of the
Third Program Visualization Workshop, pages 26–33,
2004.

[2] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The BlueJ system and its pedagogy. Journal of
Computer Science Education, 13(4):249–268, 2003.

[3] R. B.-B. Levy, M. Ben-Ari, and P. A. Uronen. The
Jeliot 2000 program animation system. Computers &
Education, 40(1):15–21, 2003.

[4] Microsoft Corporation. Computer science teaching
aids for Visual J# .NET.
http://msdn.microsoft.com/vjsharp/using/

academic/teaching/default.aspx, Accessed
November 9, 2005.

[5] S. Pollack and M. Ben-Ari. Selecting a visualization
system. In Proceedings of the Third Program
Visualization Workshop, pages 134–140, 2004.

[6] G. Rößling. Overview of the Animation Repository.
http://www.animal.ahrgr.de/animations.php3,
Accessed November 9, 2005.

[7] G. Rößling and B. Freisleben. Animal: A System for
Supporting Multiple Roles in Algorithm Animation.
Journal of Visual Languages and Computing,
13(3):341–354, 2002.

[8] J. Stasko. TANGO: A framework and system for
algorithm animation. IEEE Computer, 23(9):27–39,
1990.

1 class MinHeap :
2 {
3 public :
4 // MinHeap implementat ion goes here ,
5 // in c l u d i n g elems
6

7 BinaryHeap elems ax ;
8 } ;
9

10 int MinHeap : : extractMin ()
11 {
12 StackFrame frame =
13 s tack . push (” extractMin () ”) ;
14 int rv = elems [0] ;
15 Block rv ax = frame . getBlock (” rv”) ;
16 rv ax = rv ;
17 −−s i z e ; s i z e a x = s i z e ;
18

19 i f (s i z e > 0)
20 {
21 elems [0] = elems [s i z e] ;
22 e lems ax [0] = elems [0] ;
23 unsigned int c ; // c h i l d
24 Block c ax = frame . getBlock (”c”) ;
25 Block i a x = frame . getBlock (” i ”) ;
26 for (unsigned int i = 0 , i a x = i ;
27 i ∗2+1 < s i z e ;
28 i = c , i a x = i)
29 {
30 c = i ∗2+1; c ax = ch i l d ; // l e f t
31 i f (elems [c] > elems [c + 1])
32 {
33 ++c ; c ax = c ; // r i g h t
34 }
35 i f (elems [i] > elems [c])
36 {
37 // keep reheaping
38 std : : swap (elems [i] , e lems [c]) ;
39 e lems ax . swap (i , c) ;
40 }
41 else
42 break ; // heap r e s t o r ed
43 }
44 }
45

46 // Uncomment i f us ing graph v i s u a l i z a t i o n
47 // e lems ax . r e s i z e (s i z e) ;
48

49 return s tack . pop (rv) ;
50 }

Figure 5: Generating a visualization for min-heap
extraction

[9] J. Stasko. Animating algorithms with XTANGO.
SIGACT News, 23(2):67–71, 1992.

[10] J. Stasko. Using student-built algorithm animations as
learning aids. In SIGCSE ’97: Proceedings of the
twenty-eighth SIGCSE technical symposium on
Computer science education, pages 25–29, New York,
NY, USA, 1997. ACM Press.

[11] J. Stasko and E. Kraemer. A methodology for building
application-specific visualizations of parallel programs.
Journal of Parallel and Distributed Computing,
18(2):258–264, 1993.

