
The Art and Science of Game Programming

[Extended Abstract]

Ian Parberry
Department of Computer
Science & Engineering

University of North Texas
Denton, TX, USA

ian@unt.edu

Max B. Kazemzadeh
School of Visual Arts

University of North Texas
Denton, TX, USA

maxk@unt.edu

Timothy Roden
Center for Advanced
Computer Studies

University of Louisiana at
Lafayette

Lafayette, LA, USA

troden@cacs.louisiana.edu

ABSTRACT
The University of North Texas has for many years offered
classes in game programming to Computer Science students
and classes in game art and design to art students. A key
feature of these classes is the opportunity for these diverse
communities of students to collaborate on joint projects. We
describe the features that make these classes unique.

Categories and Subject Descriptors
K.3.2 [Computing Mileux]: Computers and Education-
Computer and Information Science Education[Computer sci-
ence Education]

General Terms
Design, Experimentation

Keywords
Game programming, graphics, undergraduate education

1. INTRODUCTION
In 1993 we introduced a game programming course to the

undergraduate computer science program at the University
of North Texas. At the time this was a difficult task, both
because there were no course materials, books, or web pages
available, and because the industry-driven focus of the class
and the perceived trivial nature of entertainment comput-
ing made the subject matter controversial. Interestingly, the
objections came from faculty - both the students and the ad-
ministration were in favor of the class. Since 1993 the initial
game programming class has evolved with the fast-moving
game industry, and spawned a second, advanced game pro-
gramming class. After more than a decade of operation,
our game programming classes have positioned our alumni

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003 ...$5.00.

for employment in companies including Acclaim Entertain-
ment, Ensemble Studios, Gathering of Developers, Glass
Eye, iMagic Online, Ion Storm, Klear Games, NStorm, Ori-
gin, Paradigm Entertainment, Ritual, Sony Entertainment,
Terminal Reality, and Timegate Studios.

Despite a rocky beginning, game programming is now
gaining acceptance in academia (see, for example, Adams [1],
Becker [2], Faltin [4], Feldman and Zelenski [5], Jones [7],
Moser [8], and Sindre, Line, and Valvg [11]), resulting in a
proliferation of new classes and programs both internation-
ally and nationwide and a move towards a professionally
recommended curriculum in game studies [6]. In contrast to
institutions such as Digipen, Full Sail, and SMU’s Guildhall
that offer specialized degrees or diplomas in game program-
ming, UNT offers game programming as an option within a
traditional computer science curriculum, and game art and
design as an option in their progressive art curriculum. A
key characteristic of our educational approach is to bring
together computer science and art students in joint projects
that enhance the educational experience for both types of
student, while grading both types independently according
to the metrics of their particular discipline.

2D and 3D Game Design is presently offered to School
of Visual Arts undergraduates and graduates as a Junior-
Senior-Graduate elective in collaboration with the game pro-
gramming course in the computer science department. With
each new semester the art based game design course logisti-
cal challenges are similar to that of the game programming
course primarily due to the fact that the game design course
is a technology driven course. With each year new game
design books and software must be investigated and the ex-
isting course curriculum must be updated and redefined to
keep up with evolving technology and the technical processes
used in the game industry. With each new software version
release comes new improvements with usability as well as
new formats for output, which require research and testing
so as to seamlessly integrate the art student’s 2D and 3D as-
sets with interfaces used in the game programming course.

UNT’s School of Visual Arts (SOVA) is a progressive con-
ceptual art school that successfully challenges the norms and
traditions of present day studio art praxes. SOVA is divided
into commercial design, studio art, and educational prac-
tice. There is presently no degree in electronic media art
or gaming, however, the integration of game design into the
SOVA course structure is being carried out with enthusias-
tic support from both the faculty and the administration.

Course offerings relating to technology are rapidly expand-
ing and the school is hiring new technologically savvy pro-
fessors who will teach courses relating to art and technology.
A new curricular structure for art and technology is forming
at SOVA that references characteristics of innovative inter-
active art programs such as Carnegie Mellon’s Trans-Media
Program, NYU’s Interactive Telecommunications Program,
Parsons School of Design’s Design and Technology Program,
and MIT’s Media Lab.

2D/3D Game Design is presently supported by SOVA
electronic media art course offerings that train students in
the areas of interface design, web-based art and interactiv-
ity, broadcast motion graphics and video-effects, animation,
and site-specific digital installation or physical computing.

Game design is an iterative process of defining a set of
rules, prototyping a system for interaction, and building
game characters, environments, and animations necessary to
an interactive narrative. With a broader definition of game
design, art and gaming programs can maintain the neces-
sary flexibility to adapt to the evolving industry environ-
ment, while providing a stimulating environment to explore
and discover new possibilities of what a game can be.

Keeping in mind that many institutions are starting game
programs, and many of them are designing their curricula
in an ad hoc manner, the purpose of this paper is to share
some of what we have learned from experience over the last
decade by describing our game programming and game de-
sign classes, the philosophy behind them, and some of the
potential pitfalls.

2. INTRO GAME PROGRAMMING
The Introductory game programming class was introduced

in 1993 as a special topics class. Despite some initial resis-
tance from faculty, it received its own course code and cat-
alog entry in 1997, effective in Fall 1998. It is offered once
a year in Fall semesters.

The students in the intro game programming class are
usually seniors in the computer science program, who are
technologically savvy and experienced programmers. They
are usually quite capable of reading the DirectX documenta-
tion themselves. For them, the biggest road-block is picking
the small subset of techniques that they actually need from
the wealth of options available. The lectures focus on get-
ting started, and leave exploration of options in the more
than capable hands of the students.

We have used a teaching technique called incremental de-
velopment. Rather than going through the DirectX docu-
mentation, we teach using a basic game called Ned’s Turkey
Farm, a simple side-scroller in which the player pilots a bi-
plane and shoots crows (see Figure 1). The aim is not to
teach this game per se, but rather to teach the development
of games in general using this engine as an example. It is
designed to have many of the features of a full game in pro-
totype form so that students can use code fragments from it
as a foundation on which to build their own enhancements.
The students are graded on the basis of a project, which is
to create a sprite-based game in groups together with art
students from the concurrent game art and design class.

The code is currently organized into a sequence of eleven
code demos. Each demo is built on top of its predecessor. A
file difference application, such as windiff is used in class to
highlight the changes in code that must be made to add the
new features. An average of one demo is presented per week.

Figure 1: Screen shot of Ned’s Turkey Farm.

A typical class begins by running the demo and pointing out
the new features, followed by a powerpoint slideshow de-
scribing the new demo, its new features, the theory or prin-
ciples behind them, and any implementation details, but at
a high level without getting bogged down in the code. This
is followed by running windiff and going through the code
changes in more or less detail depending on the complexity
and difficulty of the code. Often, we run Visual C++ to
show students in real time the effects of minor code tweaks.

The code for Fall 2004 and Fall 2005 was organized into
twelve incremental demos as follows:

Demo 0, Getting Started: Demo 0 is, for many stu-
dents, their first Windows application. It fires up a black
fullscreen window with a text prompt and waits for user to
hit the ESC key to exit. Students learn how to register a
fullscreen window, create it, draw graphics on it using the
Windows GDI, respond to user keyboard input, and shut
down the application gracefully. They are introduced to the
concepts of Windows messaging and the message pump.

Demo 1, Introduction to Direct3D: Demo 1 is our
first Direct3D application. It starts Direct3D and displays
a shoebox background consisting of a floor and a backdrop.
It may be run either fullscreen or windowed by changing a
global variable.

Demo 2, Scripting and Debugging: The executable
for Demo 2 looks the same as Demo 1, but there is a lot more
under the hood. We add XML scripting using TinyXML.
Now the students can change the behaviour of the demo
by editing Ned.xml in an XML editor instead of having to
recompile the code. This allows the art students to change
some of the settings in the game easily.

Debugging may seem like a moot issue until students se-
riously start creating their own game. The problem with
DirectX fullscreen debugging is that DirectX takes complete
control of the screen. The Visual Studio debugger is the first
line of defense, but some bugs will crash the debugger. The
debug code in Demo 2 will let the programmer read debug
output in real time in a client console application on a sec-
ond monitor, or on the screen of a second computer. It will
also save the debug output in a file, and display it in the
Visual Studio debugger’s Output window. It accepts printf-
like parameters, and it can be disabled with two keystrokes
by commenting out a single #define.

Demo 3, The Sprite: Demo 3 is our first attempt at
simple real-time animation. A plane sprite moves across the

background. F1 tabs between game view and eagle-eye view,
in which the camera pulls back so the programmer can see
what is happening “behind the scenes”.

Demo 4, Managing Objects: Demo 4 has more ob-
jects, managed by a sprite manager and an object manager.
The object manager is a first draft only in that it can create
objects but not yet delete them. Sprites are now animated
with multiple frames of animation. There is now a continu-
ous, infinite scrolling background with the camera in motion
to keep the plane in the center of the screen.

Demo 5, Artificial Intelligence: In Demo 5, crows
now have simple rule-based artificial intelligence with some
randomness thrown in to make them behave slightly differ-
ently. They try to avoid the plane as much as they can given
a limited attention span. Flocking can be seen as emergent
behaviour. The plane fires a bullet when the player hits the
space bar. Bullets have a fixed lifetime. When a bullet hits
a crow, the crow explodes and turns into a falling corpse,
which disappears when it hits the ground. The object man-
ager now has full functionality, in that it can now delete
objects and recycle their space.

Demo 6, The Game Shell: In Demo 6 there is a game
shell wrapped around the game engine, consisting of an intro
sequence (a logo screen, a title screen, and a credits screen),
and a menu screen. The player can click out of any of the
intro screens. From the menu screen one can play a game or
quit by pressing the appropriate key on the keyboard. After
each game, the player is returned to the menu screen after
they kill the last crow, or pre-emptively by pressing ESC.
From there the player can re-enter the game engine. We
show how to gain direct access to the back buffer to blit the
intro screens there directly.

Demo 7, Sound: Demo 7 introduces sound, managed by
a sound manager class. Since DirectSound will not allow a
sound to be played multiple times simultaneously, the sound
manager keeps multiple copies of each sound, sharing the
sound data, and automatically selects the first copy that is
not currently playing. The plane engine sound loops.

Demo 8, DirectInput: Demo 8 uses DirectInput to give
faster access to input hardware. We start by using it for the
keyboard and mouse instead of using the Windows messages
like in previous demos. We also add some 2D animation for
clickable buttons on the menu page. The mouse is used to
press menu screen buttons, as a joystick, and to fire the gun.
The buttons on the main menu are drawn as 2D sprites.
There is a custom DirectInput mouse cursor.

Demo 9, The Joystick: Demo 9 adds joystick control
to the DirectInput code, and adds a device selection screen
with radio buttons.

Demo 10, Onscreen Text: Demo 10 adds more com-
plexity to the game, and introduces the drawing of text in
screen space. We add multiple levels, with more crows as
level number increases, and a success screen in between lev-
els. Player can now be hit by crows, which reduces health
and ultimately kills the player. The player’s health and
number of lives are managed by a score manager. We add
text on the screen showing the level number, number of
crows, health, lives and score.

Demo 11, Persistence: Demo 11 stores in the Windows
registry the game settings that should persist from one ex-
ecution of the game to the next. We start with the high
score list and the initial input device. Checksums are used
to detect tampering. New code is added to display the high

score list, enter a new name typed in by the player into high
score list, and manage the stored high score list.

3. ADVANCED GAME PROGRAMMING
The advanced game programming class was introduced in

2000 as a special topics class. It received its own course
code and catalog entry in 2003, effective in Fall 2004. It is
offered once a year in Spring semesters. The introductory
game programming class is the sole prerequisite.

Advanced Game Programming covers real-time 3D ani-
mation. The majority of the grade for the class is for a 3D
game created in groups, a typical group consisting of two
programming students and two art students from the con-
current game art class taught in the School of Visual Arts.
An increase in the number of art students per group over
the introductory classes is required because of the increase
in work needed to produce 3D models. Programming stu-
dents are also permitted to use art work from the web, but
this has a number of disadvantages, including:

1. Quality: Models often have inappropriate triangle count
(too high or too low) and topological defects (degen-
erate, detached, or sliver triangles, for example).

2. Post-processing: Models often require significant post-
processing, for example, they may not be located at
the origin, and may have triangles listed in the wrong
order for back-face culling.

3. File format: Models are often posted in various for-
mats, for which loaders must be written or adapted
from other code. File format converters exist, but they
are typically expensive, buggy, or produce low-quality
results that require post-processing.

4. Motivation: Programming students are more excited
about their games, and hence better motivated, if they
can have custom art created on-the-fly in response to
group design decisions. Our experience has shown that
downloading art from the web typically results in dis-
satisfied students and lackluster games.

The biggest drawback to having students create a custom
3D game engine is the amount of work involved. It is imper-
ative that students use some basic utilities, for example, the
D3DXUtil library provided in the DirectX SDK. We have
used a set of improved utilities (including a basic rendering
engine, a model importer, and implementations of Euler an-
gles, matrices, vectors, quaternions, axially aligned bound-
ing boxes), published in Dunn and Parberry [3]. Students
who wish a different experience are permitted to download
and use any free game engine.

As with the introductory game programming class, one of
the key elements of this class is the excitement generated
by having programming students work with art students.
In the advanced game programming class, however, there is
a significant barrier to communication between the artists
and the programmers: the model file format problem. The
art students can work with sophisticated 3D modeling tools
such as Maya, Lightwave, and 3D Studio Max, but unfortu-
nately the native file formats generated by these programs
are proprietary and difficult to load. The programming stu-
dents work with Microsoft DirectX, which has strong sup-
port for its own file format, called ”.x”. We have found

Figure 2: Screen shot of Ned’s Turkey Farm 3D.

this disconnect between the file formats used by the artists
and the programmers the most difficult gulf to bridge. All
of the plug-ins, exporters, and file converters we have tried
have the disadvantage of being expensive or unreliable, or
both. Worse still, they fail annually when SOVA upgrades
its subscription to the 3D modeling tool of choice, leading
to a last-minute scramble to provide software tools in time.

Our current solution is to use the S3D file format proposed
in Dunn and Parberry [3] which has the advantage of being
a text format, so that programmers can open the files with
a text editor to check first hand for errors such as mangled
texture file path names, model origin, and scale. The file
format, C++ code for a model reader, and plug-ins for Maya
and 3D Studio Max are available online.

As with Intro Game Programming, we bring 2 or 3 guest
lecturers from the game industry to class, but this time the
focus is on technical material. In addition, we have found
that requiring students to give a technical presentation to
class on an advanced topic of their choice is a way to promote
independent learning. In Spring 2006, we plan to teach the
class using a 3D version of Ned’s Turkey Farm (see Figure 2)
currently under development [9].

4. GAME DESIGN AND ART
In addition to becoming proficient in the software taught,

each student in the game art and design classes use the series
of game design steps in Crawford [5] as a blueprint for how
to prepare, plan, and implement a fully functional, playable
game by the end of the semester. These steps include: (1)
Choosing a Goal and a Topic, (2) Research and Preparation,
(3) Design Phase, (4) I/O Structure, (5) Game Structure,
(6) Evaluation of the Design, (7) Pre-Programming Phase,
(8) Play-testing, and (9) Post-Mortem.

Parberry, Roden, and Kazemzadeh [10] list the following
key decisions in the development of a game programming
class that affect the outcome in a fundamental way:

1. Should the classes be theory based, or project based?
2. What software tools should be used?
3. Where do programming students find art assets?
4. Should students be free to design any game in any

genre, or should their choices be limited?
5. Should students write their own game engine, or work

with a pre-existing engine?

The following discusses the impact of these decisions on
the Game Design and Art class.

In reference to the first question, the options were a sin-
gle project course in which the grade is primarily for a large
project designed in groups, versus a supplemental projects
course where the instructor teaches hands on implementa-
tion techniques daily, have regular spaced out small projects,
an optional mid-term covering terms and techniques, and
the final project. We chose the latter supplemental projects
course due to the fact that most students were new to tech-
nology and needed to be given smaller organized projects to
encourage the practice of techniques covered in class.

On the second question, the 2D and 3D courses require
that different software be used. For the 2D course, we use
Adobe Photoshop, Adobe Imageready, Adobe Illustrator,
Painter programs, Macromedia Flash, and a small amount
of Director. We chose to use Painter, Photoshop, and Il-
lustrator to develop the imagery (characters, props, envi-
ronments), Adobe Imageready to implement/prototype an-
imations and to optimize imagery for output, Macromedia
Flash to create a working prototype of the game with ani-
mations and behaviors, and Macromedia Director to study
the basics of how object oriented programming works so as
to provide art students with a better understanding of what
programmers face.

At the beginning of the semester, we have a non-digital
prototyping workshop to practice working with a set of ma-
terials, defining a set of rules, and creating a system of play,
to stimulate students to begin thinking about game-play.
For the 3D course, we use Maya software, Painter, Adobe
Illustrator, and Adobe Photoshop for textures, and Adobe
Imageready, Premier, and After Effects for prototyping ani-
mations. In the future, we plan to practice creating a MOD
version of a game so that students are able to see their mod-
els/animations in the 3D environment.

On the fourth question, whether students should be al-
lowed to design and implement a game in any genre, we
have discovered the same outcome to be true as in the game-
programming course. Restricting the student in any way
seems to inhibit development and timely completion. When
students collaborate with their teams on a gaming concept,
there is a degree of ownership that they have for their idea.
They seem to be more excited about their project, and there-
fore more willing to carry it through to completion.

On the fifth and final question, while 2D and 3D art stu-
dents are not taught to write their own game engine, they
are encouraged to implement a game prototype of some kind
on their own within the course of the semester. It gives them
a rough sense of how potential characteristics of the com-
pleted game will look and behave, and will allow artists to
make necessary changes in scale, animation, and tweaks in
their model. It also becomes a tool for artists to communi-
cate desired effects to their programming team members.

5. THE LABORATORY
Providing a dedicated game programming laboratory proved

to be an important requirement, since the standard open
laboratories provided by UNT were unsuitable for the game
programming classes for several reasons.

• The bureaucratic process of updating software was slow
and cumbersome, since our open labs catered to a wide
range of students from the sciences and liberal arts.

• The graphics and sound cards were not up to standard.
• Students developing and playing games proved dis-

tracting to other lab users, and game development stu-
dents soon ran afoul of rules against game playing.

• Since game students are required to work in teams with
other programmers and artists, a substantial amount
of team meetings debugging need to be actually at the
keyboard. The open labs are designed for students who
work alone, and in general have a policy of silence.

• Game development students are excited about what
they do, and in consequence tend to be rowdy.

• A dedicated game development space provides a place
where students can meet and work with other students
who share their interest. The area becomes a crucible
for independent learning and experimentation that in-
spires students to greater efforts and achievements.

We started with a small room with three computers in
1993. As space became available, we moved to larger quar-
ters in 1994 and 2001, finally moving into the current loca-
tion in which we have 570 square feet, 15 computer work-
stations, and a file server. We opted for computers built
and maintained by the university, which provides free, fast
onsite maintenance. The computers are on a 2-year upgrade
cycle, as opposed to the standard 4-year upgrade cycle, paid
for by course fees from the game programming classes. The
current computers are 3GHz Intel Pentium 4, with Nvidia
6800 Ultra video cards and dual monitors.

We found that the best organization for the lab is the “bull
pit” model, with computers around the outside of the room.
The center of the room has tables arranged for conferences
and meetings, and for laptops that use the building’s wire-
less network. The computer workstations are connected to
the wired network through the fileserver, which serves as a
firewall to prevent packet floods generated by rookie game
programmers from swamping the building’s network.

To foster interaction between students and provide an
inviting club-like atmosphere, one corner of the room has
been set up with a sofa, a TV, and several game consoles.
A typical day will find people playing a game on the con-
sole, playing networked PC games, writing code for their
own game engines, and engaged in vigorous discussions on
subjects ranging from linear algebra to graphics using one
of the four large whiteboards.

Finally, the location of the lab is important. Currently it
is across the hall from the first author’s office, which since
the office and lab doors are usually open, encourages inter-
action between faculty and students. The space is located
away from the other faculty offices where the noise gener-
ated by the students will not cause a problem for more sober
and sensitive colleagues.

To ensure that the lab software is kept up-to-date and
that the hardware does not get stolen, we hire a student
as lab monitor. He or she is required to keep the lab open
for 20 hours per week. The job usually goes to one of the
alumni of the game programming courses so that he or she
can provide help to the current crop of students. In addition
to this paid position, several trusted students also have lab
access on the understanding that they provide additional
informal open hours by allowing other students to use the
lab while they are there. The lab door is fitted with an
electronic card-swipe lock that monitors and records entry.

6. CONCLUSION
We have had great success over the last decade with a two-

course sequence in game programming in a traditional com-
puter science undergraduate curriculum, and a two-course
sequence in game art and design in the School of Visual Arts.
The classes are project based, and feature cross-disciplinary
collaboration.

7. REFERENCES
[1] J. C. Adams. Chance-It: An object-oriented capstone

project for CS-1. In Proceedings of the 29th SIGCSE
Technical Symposium on Computer Science Education,
pages 10–14. ACM Press, 1998.

[2] K. Becker. Teaching with games: The minesweeper
and asteroids experience. The Journal of Computing
in Small Colleges, 17(2):23–33, 2001.

[3] F. Dunn and I. Parberry. 3D Math Primer for
Graphics and Game Development. Wordware
Publishing, 2002.

[4] N. Faltin. Designing courseware on algorithms for
active learning with virtual board games. In
Proceedings of the 4th Annual Conference on
Innovation and Technology in Computer Science
Education, pages 135–138. ACM Press, 1999.

[5] T. J. Feldman and J. D. Zelenski. The quest for
excellence in designing CS1/CS2 assignments. In
Proceedings of the 27th SIGCSE Technical Symposium
on Computer Science Education, pages 319–323. ACM
Press, 1996.

[6] IGDA Curriculum Framework. Report Version 2.3
Beta, International Game Developer’s Association,
2003.

[7] R. M. Jones. Design and implementation of computer
games: A capstone course for undergraduate computer
science education. In Proceedings of the 31st SIGCSE
Technical Symposium on Computer Science Education,
pages 260–264. ACM Press, 2000.

[8] R. Moser. A fantasy adventure game as a learning
environment: Why learning to program is so difficult
and what can be done about it. In Proceedings of the
2nd Conference on Integrating Technology into
Computer Science Education, pages 114–116. ACM
Press, 1997.

[9] I. Parberry, E. Carson, J. Nunn, and J. Scheinberg.
SAGE: A simple academic game engine.
http://larc.csci.unt.edu/sage/, 2005.

[10] I. Parberry, T. Roden, and M. Kazemzadeh.
Experience with an industry-driven capstone course
on game programming. In Proceedings of the 2005
ACM Technical Symposium on Computer Science
Education, pages 91–95. ACM Press, 2005.

[11] G. Sindre, S. Line, and O. V. Valv̊ag. Positive
experiences with an open project assignment in an
introductory programming course. In Proceedings of
the 25th International Conference on Software
Engineering, pages 608–613. ACM Press, 2003.

