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Exponential size lower bounds are obtained for some depth three circuits com-
puting conjunction using one layer each of gates which compute Boolean functions
of low total degree when expressed as polynomials, parity-modulo-2 gates, and
parity-modulo-g gates, where g is prime. One of these results implies a special case
of the constant degree hypothesis of Barrington et al. The lower bounds are obtained
from an algebraic characterization of the functions computed by the circuits: it is
shown that certain integer multiples of these functions can be expressed as the sum
of a lattice element and a function of small value. It is conjectured that this charac-
terization can be used to resolve the constant degree hypothesis. © 1994 Academic

Press, Inc.

1. INTRODUCTION

The complexity of unbounded fan-in Boolean circuits has been studied
extensively for over a decade because of its mathematical elegance and
strong connections with other sequential and parallel models of computa-
tion. Though the Boolean circuit model is considered by many as one of
the most promising approaches to the 2 # 4”2 problem, there has not
been great success in proving lower bounds for general Boolean circuits.
The best known size lower bound for Boolean circuits which compute an
A'# complete problem is only linear, which is far away from the super-
polynomial lower bound needed to separate # and A2,
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As with any difficult problem, it is prudent to begin with restricted cases.
One of the most successful of these is the case of constant depth circuits.
The study of constant depth unbounded fan-in Boolean circuits began with
Furst, et al [4], and independently Ajtai [1], in an attempt to separate
the polynomial time hierarchy from 25 2.«/6& by oracles. Since then,
exponential lower bounds have been shown for constant depth circuits of
conjunction, disjunction, and Boolean complementation gates computing
the parity modulo 2 of n inputs (Hastad [6], Yao [16]), and circuits of
conjunction, disjunction, Boolean complementation, and parity-modulo-2
gates computing the parity modulo 3 of » inputs (Razborov [10],
Smolensky [127). These circuit lower bounds often have important
applications, including the separation of the polynomial time hierarchy by
oracles (Sipser [11], Yao [16]), and proofs of lower bounds for finite
automata over groups (Barrington et al. [3]).

Another motivation for the study of bounded depth unbounded fan-in
circuits is their connection with neural networks. It was shown in Parberry
and Schnitger [8, 97 that the complexity class TC?, consisting of functions
computable by polynomial size circuits of bounded depth with threshold
gates, is equivalent to the class of functions computable by a certain
connectionist model of neutral networks. Recent lower bound results
concerning 7C? include the separation of threshold circuits of depth 2 from
depth 3 (Hajnal et al. [5]), the separation of monotone threshold circuits
of depth k& from depth £+ 1 for all & (Yao [15]), and lower bounds for
some special depth 3 threshold circuits (Hastad and Goldmann [7]).

Currently, there are no nontrivial size lower bounds for constant depth
circuits of conjunction, disjunction, and parity-modulo-2 and parity-
modulo-3 gates. Barrington er a/. recently showed an exponential lower
bound for some special cases; they showed that depth 2 circuits with only
parity-modulo-p and parity-modulo-g gates which compute the Boolean
conjunction of » inputs must have exponential size [3]. Even this very
restricted case requires a fairly deep proof. They conjecture that the result
remains true even if the circuit is extended to depth 3 by inserting an extra
level of gates which compute constant-degree polynomials of the inputs.
They call this conjecture the constant degree hypothesis.

We provide a new algebraic technique for proving size lower bounds for
special depth 3 circuits which consist of one layer each of parity-mod-2
gates, parity-mod-g gates, and a layer of gates which compute functions
whose degrees (when expressed as polynomials) are a small linear function
of the number of inputs to the circuit. We derive exponential size lower
bounds for circuits computing conjunction in which the latter layer is either
the first or second layer. We reduce the more general case in which parity-
mod-2 gates are replaced by parity-mod-p gates, and the constant degree
hyothesis, to plausible algebraic questions which nonetheless remain open.
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The remainder of this paper is divided into four sections. The first con-
tains background and definitions. The second contains a new algebraic
characterization of circuits of parity-modulo-2 and parity-modulo-g gates.
The third uses this characterization to prove an exponential size lower
bound for a special case of the constant degree hypothesis: the case in
which the sum of the degrees of the first layer of gates is bounded above
by a small linear function in # (the second and third layers are parity-
modulo-2 and parity-modulo-q gates, respectively). It also contains an
exponential size lower bound for a similar circuit in which the order of the
layers is changed. The fourth and final section uses the characterization to
reduce the case in which parity-mod-2 gates are replaced by parity-mod-p
gates, and the constant degree hypothesis to an algebraic question which is
left as an open problem. A preliminary version of the result in this paper
forms part of the first author’s Ph.D. thesis [14].

2. BACKGROUND AND DEFINITIONS

A circuit is a directed acyclic graph. The sources of the graph are called
inputs, the sinks are called owzpurs, and the other nodes are called gares.
Each gate is labelled with a function f. We will call any gate which is
labelled with f an f-gate. A circuit calculates a function of the input
variables in the natural way. The value of an f-gate g is defined to be the
function f applied to the values of those gates A such that there is an edge
from A to g in the graph. Thus given a sequence of values for the inputs,
the corresponding output of the circuit is defined to be the sequence of
values of the outputs in some fixed order. We will consider circuits with a
single output gate, that is, circuits that compute Boolean functions. The
maximum in-degree of gates and outputs in the circuit is called the fan-in
of the circuit. The number of nodes is called the size of the circuit, and the
length of the longest path from an input to an output is called the depth
of the circuit. Equivalently, the depth of a circuit is the number of layers
of gates, where each gate in a given layer receives inputs only from the
gates in the preceding one.

If p is a prime number, the parity-modulo-p function, written Mod[ p],
is defined as

0 if x,+---+x,=0 (mod p)

Mod[pl(x,, x;, .., x,) = {1 otherwise

where n2 1. In the future, we will use p, g to represent arbitrary primes
unless otherwise stated.

We represent each n-input Boolean function as a polynomial in
Xy, X2, .., X,. Any n-input Boolean function can be uniquely written as a
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polynomial in x,, x,, .., x,, over the ring of integers Z, where x, satisfies the
relation x;= x? for 1 <i<n. For example, we can write the conjunction of
x and y as xy, and the disjunction of x and y as x + y — xy (in both cases,
concatenation denotes integer multiplication and “+” and “—" integer
addition and subtraction, respectively). More formally, any Boolean
function can be identified with an element Z[x,, x5, .., x,1/{x; — x3, ...,
x,— x2» by identifying the Boolean value “true” as the integer 1 and the
Boolean value “false” as the integer 0, where Z{ x,, x,, ..., x,,] is the polyno-
mial ring of » indeterminates x,, x,,..,x, over Z and {x,—x},..,
x,—x2> is the ideal in Z[x,, x,, .., X, ] generated by x,— x? for 1 <i<n.
Note that such polynomials do not contain variables of exponent greater
than unity because x,=x?, and therefore the term of highest possible
degree is x,x,---x,. This representation of Boolean functions as polyno-
mials over Z can be generalized in the sense that Z can be replaced by any
other ring (with identity) or field. Let 4 be a ring or a field. We use U’
to denote A[xy, X3,y X, /<Xy — X2, ., X, — x2>. If A is a field, then U”, is
an algebra of dimension 2" over A under the usual addition and multiplica-
tion. A complete description of the representation of Boolean functions by
polynomials over fields can be found in Smolensky [12].

3. CIRCUITS AND LATTICES

Let V be an n-dimensional vector space over the rationals Q. A lattice (of
dimension m < n) is a Z-module generated by m vectors vy, v,, .., v,,, that
is, the set {37, z;0,|z,€Z}.

We will derive our lower bounds by expressing a certain integer multiple
of the function computed by a circuit as a sum of a function from a lattice
M and a function e, where the range of the function e consists of values
bounded above by a polynomial in the size of the circuit. The expressing
power of ¢ is limited by the bound on its range. If the expressing power of
M is also limited in a certain way then the expressing power of the sum is
also limited.

Let Poly(f(i)) be the class of polynomials in U4 where each monomial
of degree i has a coefficient which is an integer multiple of f(i). In this
paper we consider mainly lattices of the type Poly(p'”'~<), where
¢;,c;€Z. The reason for considering lattices of this type is that they
correspond to Z-modules generated by certain Mod[ p] functions. In this
and the next section, we consider the special case where p=2 and ¢, =1.
The general case is considered in Section 5.

We define M, to be the module over Z generated by all functions of the
form

Mod[p1(y1s ¥as - ¥i)s
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where y,€ {x,, x5, .., x,} for 1 <i<t We first consider M,, the simplest
such module.
Mod[2](x,, x5, .., x,,) can be written as

_1=0TEL, (1 =2x)
= ; )

Mod[21(x,, x5, ..., X,,)

This expression is a polynomial of x,, x,, .., x, over Z which has the
property that the coefficient of a monomial of degree i is an integer
multiple of 2°~ . Since all other Mod[2] functions of input variables can
be obtained by setting some of the variables in the above expression to 0
or 1, they all have the same property. Thus

M, < Poly(2i—1).

Poly(2/~') is a lattice of dimension 2” in U} which has limited expressing
power because the coefficients of high degree terms are restricted to be in
some proper subset of Z. We will use this limitation later to put restrictions
on the power of depth 2 circuits of Mod{2] and Mod[ 4] gates.

In the next lemma, we observe a property of the function Mod[ g] which
will be used to construct a decomposition of circuits with Mod[ ¢] gates.
In the statement of the lemma, |x| denotes the absolute value of x.

Lemma 3.1, Let g,, 4>, ... &, be Boolean functions of x,, x,, ..., x,,. For
all primes q, there exists eeZ[x{, X5, ..., X, ] such that |e(x, x,, .., x,)| <
s '+ 1 for all (x,, x,, .., x,)eB", and

Mod[g])(g,:, 82, - 8)=(g1+g>+ --- +g.§)q~l+qe'

Proof. Let Z, denote the finite yield of ¢ elements. Since x?"'=1 for
any x #0eZ,, we see that over Z_,

Mod[g)(g:. 82 - &)= (g1 + &2+ -+ +g)7 L

Therefore over Z, there must exist a polynomial ee Z[x,, x,, .., x,,] such
that

Mod[q](g;, 82, - 8)= (g1 + g2+ - +8)7 ' +ge. (1)

It remains to show that for all (x,, x,, .., x,)€B", le(xy, x5, .., X,)| <
s 1+ 1. Rewrite (1) as

ge=Mod[qg](g,, 82 - &) — (g1 + 82+ - +g,) L
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Taking the absolute value of both sides, we have

Igel <|Mod[q1(g1, 82, - & + (g1 + &2+ -+ +8)7 ']

For all (x,, x,, .., x,,) € B", the first term on the right is no larger than 1
and the second term is no larger than s77' (since Mod[¢g] and g, are
Boolean functions for 1<i<s). Since ¢> 1, the required result follows
immediately. |}

We are now in a position to introduce the basic idea behind our lower
bound technique. We decompose a certain integer multiple of the function
computed by a circuit into a sum of a lattice element and a function with
small range.

Let M be a lattice, we denote by M*, where k € N, the lattice generated
by all elements of the form m,m, ---m,, where m,e M, 1 <i<k.

THEOREM 3.2. Let C be a circuit with a Mod[q] gate on the last level,
and above it s subcircuits which compute polynomials from Poly(2'~¢) for
some ceZ (c may be a function of n). Let T={2"" <9~ Y/q | If C calculates
a function f, then there exists le Poly(2' ““ V) and a polynomial re
Z[X), Xgy oy X, ] With [r(x,, X4, .., x,,)| = O(s7 ") for all (x|, x,, .., x,)€ B",
such that

Tf=1+r
Proof. f can be expressed as

f: MOd[‘I](gn 825 -5 gs)7

where g, is a subcircuit which computes a polynomial in Poly(2°~ ). By
Lemma 3.1, there exists a polynomial ee Z[ x,, x,, .., X,,] such that

f=(g +g+ - +8) " +qe (2)

and |e(x,, Xs, ..., X,}| <577 '+ 1 for all (x,, x,, .., Xx,) € B™.
Let T=|2""<“"Y/g | and d=2""““"1 Mod q. Multiplying both sides
of (2) by T, we have

Tf: T(gl—+-g2+ +gs)¢1*l +2"*<’(q—l)e_de_

Since g, + g5+ ...+ g, Poly(2 ) and [Poly(2'~)]7 ! = Poly(2/~ <7~ 1y,
both T(g, +g,+..+g,)¢ ' and 2" ““~Ye are in Poly(2' <~ V). Taking
I=T(g,+g,+..+g) '+2"" < D¢ and r= —de, the required result
follows. |

Theorem 3.2 will be the crucial tool used to show lower bounds for some
special depth 2 or 3 circuits of Mod[2] and Mod[g¢] gates in the next
section.
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4. CircuiT Lower BounDs

Before we meet the circuit size lower bounds, we will make some obser-
vations about the lattice Poly(2°~°), where ceZ. Let .# be the lattice
generated over Z by functions

[T(-2x),

ieS

where S<={1,2,.,n}. It is easy to see that .# =Poly(2’) and
Poly(2'~“y= .#/2°. Note that the functions [],.5(1-—2x;) form an
orthogonal basis for Ug, with respect to the inner product

frg>= Y flx)g(x).

xeB”

We will use this fact later to analyze the minimum distance between the
lattice Poly(2'~“) and a function outside the lattice.

Poly(2'7°) can also be characterized in terms of the discrete Fourier
transform. A function can be uniquely expressed as a linear combination of
{IT,.s (1 =2x,)}s, the coefficients of which are called the spectral coef-
ficients. Poly(2'~ <) is the lattice whose elements have spectral coefficients of
the form ¢#/2¢, where ¢ is an integer.

Let f,,f, be two functions in Uj}. We define the distance d(f;,f>)
between f| and f, to be the L norm of f, —f,, that is,

d(fy. f3) = max|f;(x) ~fo(x)].

In Theorem 3.2, if we can show a large distance from Tf to all functions
in the lattice Poly(2'~““~ D), then r must be large and therefore s, the
number of subcircuits above the last level, must be large since r is bounded
by O(s?~'). The next lemma shows that this is indeed the case with the
conjunction. Throughout the paper, S denotes a subset of the natural
numbers and ||S|| denotes the cardinality of S.

LeMMma 4.1. Let f=x,---x, be the n-input conjunction, and let ¢ be an
integer which satisfies c(q—1)<n/2. Then for large enough n and all
le Poly(27—<te— 1,

n/2—clg—1)

d(Tf, Iy 2 ———,
2q

where T=|2"" @~ D/q |

643/112/1-9
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Proof. Let L, norm of a function f is defined to be

Iz = Z"f(X)z-

Let / be an arbitrary element in Poly(2’~<“~ ). Although the L. norm
d(Tf, 1) seems to be hard to analyze, we will use the L, norm of Tf—/ to
bound it.

To estimate ||7f—/|,, we write both Tf=Txx,---x,, and [ as
linear combinations of {[],.s(1—2x,)}s. Denote the coefficient of
I1,.s (1 —2x,)in the expansion of Tf and / by ag and b respectively. Then
ag can be evaluated by taking the inner product of 7f and [T, s (1 —2x,):

a :<Tf;l—[ies(1_2xi)>
s |lI—LEs(1—2X,~)H§
A simple calculation shows that

as=(—l)”5" T/2" = _I)IISN

20 * 0(1/27).
For bg, we note that Poly(2'~<“~ D)< Poly(27)/2°“~ 1 and Poly(2’) is
generated over Z by {T],.¢(1—2x,)}s. Therefore bg=1¢2"" for teZ
Since {[1;.s (1 —2x,)} s is an orthogonal basis and ||[],_ (1 —2x,)||3 =27,
we now have

HTf_[“% = Z (as_bs)2 2",
S<{1,2 ...n}

The difference between ag and by is at least (1/g2°¢~ D)+ 0(1/27), which
is greater than 1/242<“~ 1V for large enough n. Therefore

1 1
1T =113 = ) (as—bs)? 2n2‘4q222c(q~1)2"2":@52"*26(‘1_“2"'

Sc 1,2, .., n}

Since the domain of a function f in U{ has only 2” members, we can
bound d(T¥, /) as follows:

nj2—c(g—1)

d(Tf, )= | Tf - 1],/27* > P

We now prove our lower bound results.

THEOREM 4.2. Let C be a circuit with a Mod[q] gate on the last level,
and above it s subcircuits which compute polynomials from Poly(2~°) for
some ceZ (¢ may be a function of n). If C calculates the conjunction of n
inputs, then the size of the circuit is Q(27*9- 1<),
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Proof. Let f=x,x,---x,and T=|2""<9~Y/y | By Theorem 3.2,
Tf=I1+r,

where /e Poly(2" <~ V) and reZ[x,, X,, .., x,] with |r(x,, x5, .., X,)| =
O(s? ") for all (x,, X5, ..., x,) € B". By Lemma 4.1, d(Tf, 1) > 2"*~<le= 124,
for large enough n. Thus

n/2—clqg—1)
|r(x1, X3y aues xn)l = O(S‘]—v])2
2q

This implies that s=Q(2%%¢~1~¢), Since the output gate is a Mod[q]
gate, we may assume that no more than g subcircuits input to it are
identical. Therefore, the size must be (2729~ =<) |}

Applying Theorem 4.2 to (Mod[27], Mod[¢])-circuits give us the result
below.

COROLLARY 4.3. Any (Mod[2], Mod[g])-circuit calculating the con-
Junction of n inputs must have size Q(2™*9~ 1),

Proof. By Theorem 4.2, it is sufficient to show that a Mod[2] function
of the input variables is in Poly(2'~!). This is true since M,<
Poly(2'='). §

Barrington [2] has an alternative proof of Theorem 4.2 based on a
unique representation argument. Our proof provides a new method for the
analysis of circuits of Mod[2] and Mod[gq] gates. It has the advantage
that it can be extended to show lower bounds on some other slightly more
complicated circuits as we shall see in Corollary 4.4 and 4.5 below.

COROLLARY 44. Let C be a depth 3 circuit with first level gates cal-
culating g,, 85, ..., &, input to a (Mod[2], Mod[g])-circuit. Suppose that

Y (deg(g,)—1)< —~d,

1<i<m,deg(gi) =1

n
— 1
2q—-1)

where deg(g;) denotes the degree of g; as a polynomial. If C calculates the
conjunction of n inputs, then C must have size Q(29).

Proof. Let hy, h,, .., h, be the Mod[2] functions on the second level.
By Theorem 4.2, it is sufficient to show that

h;=Mod[2](g;, &i» - §s,) € Poly(2' "2~ D*4),
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Each term in A, has the form (—1)"SI-121si-1 I1,.s8, The degree of
Hijesg,, is at most || S|| +#n/2(g—1)— 1 — d because

deg ( I1 g,-,> < deg(g;)

e S ij€ S, deglgy) >

= 2 (deg(g;)— 1)+ > 1

i,eS.deg(glj)zl 4e S, deg(g,j)?l

n
<——— 1—d+|S].
TeEs 11

This implies that #,e Poly(2/— %2~ +d))

Note that this is in a sense slightly more general than the constant degree
hypothesis, since the polynomial degrees of the functions may be non-
constant, provided the sum of the degrees is a small linear function of n.
We can also prove the following variant.

COROLLARY 4.5. Let C be a circuit with the first layer Mod[2] gates,
the second layer s gates which compute g, g, ..., &,, and the third layer a
Mod[gq] gate, where g, is a polynomial of degree no larger than
n/2(q— 1) —d. Suppose C calculates the conjunction of n inputs. Then the
size of the circuit is Q(29).

Proof. 1Ttis sufficient to show that g,(h,,, h,,, .., h; ) € Poly(2/~#le=+d)
where #’s are the Mod[2] gates on the first level. Since deg(g,)<
n/2(g— 1) —d and each Mod[2] function is in Poly(2°~ 1), gilhi, hiys s hy)

must be in [Poly(2/~1)]#24 -1 -4 =Poly(2i-*2-D+dy |

5. THE GENERAL CASE

In this section we generalize the algebraic characterization of the last
section to (Mod[ p], Mod[g])-circuits, and examine a possible method of
using a similar characterization to prove the constant degree hypothesis.
Barrington et al. conjectured in [3] that circuits of the form (constant
degree polynomial, Mod[ p], Mod[¢]) calculating conjunction must have
exponential size, and they call this conjecture the constant degree
hypothesis. In both the (Mod[p], Mod[¢]) and (constant degee polyno-
mial, Mod[ p], Mod[¢]) cases, we are able to reduce the circuit com-
plexity question to an algebraic one. These questions remain open for
conjunction.

We first study the analogue of M, for the Mod[ p] function. In the case
of the Mod[2] function, M, can be characterized as Poly(2'~'). The next
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lemma gives us a similar characterization of the lattice generated by all
Mod[ p] functions of input variables.

LEmMMa 5.1, Mod[p](x,, x3,..., x,) € Poly(p V= "Vr-1 )

Proof. Let £, be the pth root of unity and let Z[£,] be the ring
generated by £, over Z. Let , denote the function

1 -Mod[pl{x,, x5, ..., x,,0,..,0, 1, .., 1).

————— S —

k p—k

Define function ¢ as

p—1 n

y=3 =11 0 =(1=¢&,)x).
k=0 i=1

The equality between the sum and the product in the above is true since

they both have value & for an input satisfying x, + --- +x, =k (mod p).

The roots of unity 1, £,, £7, ..., &7~ ' satisfy the equation 1+¢,4+&2+ -+ +

&r=!'=0. Therefore, y can be rewritten as
p—2 "

lpzz fﬁ(‘/’k"f’p—l)zn(1_(1‘5,;)-\':‘)-
k=0 i=1

The coefficient of a monomial of degree i in y is divisible by (1 —¢&,),
and therefore divisible by pt/ ') since p factors as n(1—¢&,)7~' in
Z[¢,], where n is an invertible element in Z[£, ](see, for example,
Weiss [13, p.262]). Since 1,¢,,¢2, .., ¢27 % are linearly independent,
this implies that a monomial of degree i in ¥, —y, | is divisible by
ptie =D for all 0<k<p—2. Write Mod[pl(x,, X5, ., X, X, 4) @S
Lse 2. .nne1y tsXs, where Xg=TT, ¢ x;. We show that « is divisible
by pt(#SI=tVr=11 By setting x,, ;=0 and x,,, =1 we can write i, and
W, in terms of 1 —Mod[p](x,, x4, s X, X,y )

‘//O_dlpfl: Z aSXS‘{n%-l}'

n+le§

For all S containing x, ., %5 is the coefficient of a monomial of degree
IS —1 in Yo—¢, , so it is divisible by pt{sI= =11 Since the
Mod[ p] function is symmetric, the restriction of containing x, ., merely
says that ||S|=1. |

Since all Mod[ p] functions of the input variables can be obtained by
setting some of the variables equal to other variables or to 0 or 1 in the
gernaral expression Mod[p](x,, x;, .., x,), they all have the property
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stated in Lemma 5.1 and therefore so does every element in M,. This
characterization of M, is similar to that of M, the difference being that in
M, the coefficient of a monomial of degree i is an integer multiple of
ptt— =1t ipstead of 2/~ '. Next, we generalize this characterization to
the case of (constant degree polynomial, Mod[ p], Mod[¢])-circuits.

LEMMA 5.2. Let M’ be the module generated by all functions of the form

MOd[p](gl’ 825 s gm)y

where g, are polynomials of degree <c. Let M= (M')?~". Then
Mc Poly(pLi/‘(P‘ 1)]—2g— 1)).

Proof. Since Mod[p](x,, X,, .., x,) is in Poly(pt“=1r=U1y it js
obvious that M’ < Poly( plt ¢/t~ W/tr=1J) Raising Poly(pl#(c=DVr—=1l) to
the (¢ — 1)th power, we get

[Poly(p'-“/(cf /(p— IU)]qf 1 c POly(pL"/c(pf D-(@g-1D(p-1)]—(g~ l))

c poly(pLi/c(pfl)J-2(qflJ)’

which is the desired result. |

Lemma 5.2 gives us the following result about the constant degree
hypothesis:

THEOREM 5.3. Let f be a Boolean function. If
d(Tf, 1) =2°"

Sor all le Poly(pt¥<(r=D1-2a=1 ywhepe T=| pt™<r-DI=2a=D/g | then
the constant degree hypothesis is true for f.

We conjecture that for f=x,x,---x,, d(Tf,1)=2%". Although we
cannot prove this conjecture, we can prove that d(Tf, {)= 29" is true for
almost every Boolean function f. For simplicity, the following theorem is
stated only for p=2, c=2.

THEOREM 5.4. Let g be an arbitrary prime different from 2,
M =Poly(2L721-24=1) gnd T=|2L"2172@=Djg | If f is a random
Boolear function then

1
lim P{d(TY, >3, 278 e M) = 1.

n— oo
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Proof. The natural map from Z to Z’' =2, 5, extends to a map from
U’ to U%. The image of M under this map is denoted by M’. It is easy
to see that M’ is generated over Z’, as a Z’-module, by all monomials of
degree i with | i/2 |—2(q— 1)< | n/8 . The number of such monomials is
bounded by a” for large enough n and some positive constant a < 2, hence
the number of functions in M’ is bounded by (2-784),

Let f,, f; be the two different Boolean functions. If there are /|, /,e M
such that 4(Tf,, 1)< (1/3g) 23 and d(Tf,, 1)< (1/3q)2"%4, then
I # 15, where I}, I are the images of /, /, under the map from U’ to U%,..
This is true because if not, then

(Tfi 1)~ (Tfy = L) =2""" g + (If, — Tf))

for some nonzero polynomial g over Z. Taking the absolute value
and using the assumption that d4(Tf,,!,)<(1/3q)2 "84, d(Tf,, 1,) <
(1/3¢) 2L"#4, we would have
2
)5—2“’/“ > |24 g + T(f, = 1))

This is a contradiction since T = [ 2t%2d -2~ V/g | = 2Lm21=2a—D/a 4 O(1)
and it can only be approximated by a number of the form 2-"%J for some
integer 7 with error no less than (1/g) 2L%#1+ O(1).

The above argument implies that the number of Boolean functions f for
which there is an /€ M such that d(T¥, I) < (1/3g) 21"/®1 is no more than the
number of functions in M'.

Therefore

(2|_n/8j)a"

1
lim P{d(Tf,)>5-2-"*, vie M} > 1~ lim 1.
q

n-— o n— oc 22"

RECEIVED November 16, 1990; FINAL MANUSCRIPT RECEIVED April 8, 1992

REFERENCES

1. AsTal, M. (1983) X'} -formulae on finite structures, Ann. Pure Appl. Logic 24, 1-48.

2. BArrRINGTON, D. (1983) “With 3 Permutation Branching Programs,” Technical report
TM-291, MIT Laboratory for Computer Science.

3. BARRINGTON, D. A. M., STRAUBING, H., aAnD ToHEREN, D. (1988) “Non-uniform
automata over groups,” Technical Report 88-77, Department of Computer and Informa-
tion Science, University of Massachusetts at Amherst.

4. Furst, M., Saxg, J. B, anD Sipser, M. Parity, circuits and the polynomial time
hierarchy, Math. Systems Theory 17(1), 13-27.

5. HaNAL, A., Maass, W., PubLak, P., SZEGEDY, M. aAND TuraN, G. (1987), Threshold
circuits of bounded depth, in “Proceedings, 28th Annual IEEE Symposium on Founda-
tions of Computer Science,” pp. 99-110.



130 YAN AND PARBERRY

6.

7.

12.

13.
14.

HasTtaD, J. (1986) Improved lower bounds for small depth circuits, in “Proceedings 18th
Annual ACM Symposium on Theory of Computing,” pp. 6-20.

HasTaD, J., AND GOLDMANN, M. On the power of small-depth threshold circuits, in
“Proceedings 31st Annual IEEE Symposium on Foundations of Computer Science,”
pp. 610-618.

. PARBERRY, 1., AND SCHNITGER, G. (1988), Parallel computation with threshold functions,

J. Comput. System Sci. 36(3), 278-302.

. PARBERRY, 1., AND SCHNITGER, G. (1989), Relating Boltzmann machines to conventional

models of computation, Neural Networks 2(1), 59-67.

. RazBorov, A. A. (1987), Lower bounds for the size of circuits of bounded depth with

basis {4, @}, Mat. Zametki, 41(4), 598-607; English translation, Math. Notes 41(4),
333-338.

. Sipser, M. (1983), Borel sets and circuit complexity, in “Proceedings, 15th Annual ACM

Symposium on Theory of Computing”, pp. 61-69.

SMoOLENSKY, R. (1987), Algebraic methods in the theory of lower bounds for Boolean
circuit complexity, “Proceedings, 19th Annual ACM Symposium on Theory of
Computing,” pp. 77-82.

WEIss, E. “Algebraic Number Theory,” 2nd ed., Chelsea, New York.

YaN, P. Y. “Lower Bound Techniques in Some Parallel Models of Computation,” Ph.D.
Thesis, Department of Mathematics, Penn State University.

. Yao, A. C. (1989), Circuits and local computation, in “Proceedings, 21st Annual ACM

Symposium on Theory of Computing,” pp. 186-196.

. Ya0, A. C. (1985), Separating the polynomial-time hierarchy by oracles. in ”Proceedings,

26th Annual IEEE Symposium on Foundations of Computer Science,” pp. 1-10.



