
Improved Upper and Lower Time Bounds for Parallel Random
Access Machines without Simultaneous Writes

Ian Parberry

,Department of Computer Science
333 Whitmore Laboratory,

,The Pennsylvania State University
University Park, Pa. 16802.

D

Pei Yuan Yan

epartment of Mathematics,

T
407 McAllister Building,

he Pennsylvania State University,
University Park, Pa. 16802.

ABSTRACT

e
m

The time required by a variant of the PRAM (a parallel machin
odel which consists of sequential processors which communicate by

-
t
reading and writing into a common shared memory) to compute a cer
ain class of functions called critical functions (which include the

l
c
Boolean OR of n bits) is studied. Simultaneous reads from individua
ells of the shared-memory are permitted, but simultaneous writes are

m
not. It is shown that any PRAM which computes a critical function

ust take at least 0.5 log n − O(1) steps, and that there exists a critical

b
function which can be computed in 0.57 log n + O(1) steps. These
ounds represent an improvement in the constant factor over those pre-

viously known.

0January 31, 199

Improved Upper and Lower Time Bounds for Parallel Random
Access Machines without Simultaneous Writes

Ian Parberry

,Department of Computer Science
333 Whitmore Laboratory,

,The Pennsylvania State University
University Park, Pa. 16802.

D

Pei Yuan Yan

epartment of Mathematics,

T
407 McAllister Building,

he Pennsylvania State University,

1. Introduction.

University Park, Pa. 16802.

A PRAM consists of an infinite collection of sequential processors connected to a

e

f

common shared memory. In each time interval, or step, each processor reads a valu

rom the shared-memory, moves into a new state and writes this new state back into

y

m

the shared-memory. Simultaneous reads of a single cell in the shared-memory b

any processors are permitted, but simultaneous writes are not. Computation of a

e

s

function on n inputs proceeds by placing the n input values into the first n cells of th

hared-memory, starting the PRAM with all processors in a pre-defined initial state,

b

and waiting for all processors to halt. When the computation is over, the output can

e found in the first shared-memory cell. The running-time of the PRAM is defined to

be the number of steps taken, expressed as a function of n.

The lower-bound techniques discussed in this paper are based on a communica-

.

M

tion argument, and thus hold even if the processors have infinite computational power

any of the ‘‘standard’’ models which have become popular in the recent literature

(for example, in Fortune and Wyllie [3], Goldschlager [4, 5], and Shiloach and Vishkin

- 2 -

n

t

[11]) limit the local computational power of the individual processors. More details o

he effect that this can have on the computational ability of PRAMs can be found in

d

t

Parberry [6-8]. Our upper-bound is intended to illustrate the limits of the lower-boun

echnique by taking advantage of the unlimited computing power of the processors,

c

and is not intended as a practical algorithm. We will, however, use a number of pro-

essors which is only a polynomial in the size of the input.

-

p

A Boolean function is said to be critical if there exists an input I with the pro

erty that changing any single bit of I changes its output. One example of a critical

l

function is the Boolean OR of n bits (consider the all-zero input). The obvious paral-

el algorithm for computing the Boolean OR of n bits uses ‘‘successive doubling’’ and

-takes time R
Jlog n H

J. (From this point on, all logarithms will be to base 2 unless other2

wise indicated). This intuitively seems to be a lower-bound, based on the number of

a

bits that a processor can ‘‘know about’’ at each point in time. Independently, Cook

nd Dwork [2] and Reischuk [10] noticed that this ‘‘obvious’’ lower-bound is

t

incorrect. These authors combined their results in [1]. From this reference we learn

hat any PRAM which computes a critical function on n inputs must take time at least

tlog n where b = 0.5(5+ 21) is slightly greater than 4.79. We will show that it musb √ddd

t 4ake time at least log n − O(1). From it we also learn that there is a critical function

-that can be computed by a PRAM in time log n + 1. We will show that there is a crit3

c d√d2

i

ical function which can be computed by a PRAM in time log n +O(1) where c = 2+

s slightly greater than 3.41. The relationship between these results is summarized in

n

b

Tables 1.1 and 1.2. Other lower-bounds for PRAMs without simultaneous writes ca

e found in Simon [12] and Snir [13].

- 3 -

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Lower-Bound Upper-Boundiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Previous 0.44 0.64 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Current 0.5 0.57 i

c
c
c
ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

c
c
c
c

c
c
c
c

d
f
Table 1.1 Previous best-known upper and lower-bounds on the time require
or a PRAM to compute critical functions. Each entry in the table shows the

constant c where the dominant term in the bounds is of the form c log n.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i Lower-Bound Upper-Boundiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iPrevious 3 4.79iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iCurrent 3.41 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

t
s
Table 1.2 Previous best-known upper and lower-bounds on the number of inpu
ymbols of a critical function that a PRAM can compute in t steps. Each entry

a

c

in the table shows the constant c where the dominant term in the bounds is

onstant times c .

T

t

he remainder of the paper is divided into four sections. The first describes the

-

c

PRAM model in more detail, whilst the second contains some preliminary results con

erning exclusive-write PRAMs. The lower and upper-bounds are contained in the

s

p

third and fourth sections, respectively. A preliminary version of the results in thi

aper appeared as part of the second author’s Ph. D. thesis [14], and in Parberry and

2

Yan [9].

. The PRAM Model.

A PRAM consists of an infinite number of processors and an infinite shared

-

i

memory. The shared-memory is divided into cells, each of which is capable of hold

ng a natural number (for the purposes of this paper, we count 0 as being a natural

t

number). Each processor has a state, which is also a natural number. The cells and

he processors are numbered consecutively from 0. More formally, a PRAM M con-

s

- 4 -

ists of a triple (r,s,w), where r,w:NN →NN, and s:NN →NN. An input to M consists of a3 4

0 1 n−1 i -

b

finite sequence of natural numbers I = (x ,x ,...,x). Each x is called an input sym

ol. At the start of the computation, x is placed into cell i of the shared-memory,

0

i

≤ i < n, whilst cell i for i ≥ n is set to 0. Each processor is placed in state 0. The

,computation on input I proceeds in a sequence of discrete steps. During the t stepth

n

s

t ≥ 1, each processor p, p ≥ 0 does the following simultaneously. Suppose that p was i

tate q∈ NN at the end of the (t−1) step (where the 0 step refers to a point in timeth th

.

1

immediately before the computation began)

. Read a value v from shared-memory cell r(p,t,q).

.2. Compute v′ = s(p,t,q,v). The state of p at the end of the t step is v′th

S

3. Write the value v′ into cell w(p,t,v′).

imultaneous reads of a single shared-memory cell by many processors are permitted,

s

but simultaneous writes into a single cell are not. The output of M will be found in

hared-memory cell 0 when the processors have terminated. The time required by M

t

i

is the maximum over all inputs of size n of the number of steps needed to process tha

nput, expressed as a function of n.

For the purposes of our lower-bounds, we will be more lenient than is customary

l

a

in our definition of what it means for a PRAM to compute a function, in that we wil

llow some pre-processing of the inputs before the computation begins, and post-

f

processing of the output after the computation ends. We say that a PRAM computes

:NN →NN if there exist functions α,β:NN→NN such that the PRAM on input* *

0 1 n−1 0 n r

u

α(x),α(x), . . . , α(x) produces output y∈ NN where β(y) = f(x ,...,x). For ou

pper-bounds we will insist that no extra pre- or post-processing can be done, that is,

α and β are the identity functions.

- 5 -

We will say that two PRAMs are functionally equivalent if they compute the

e

t

same function, and that they are equivalent if they are functionally equivalent and hav

he same running time.

3. Persistence and Predictability in PRAMs.

eDefinition 3.1 Let I = (x ,...,x)∈ {0,1} be an input string. Defin0 n−1
n

I 0 u−1 u u+1 n−1(u) = (x ,...,x ,xd ,x ,...,x), where 0d= 1 and 1d= 0, to be the input which is identi-

cal to I except in the u bit.th

Definition 3.2 (Cook, Dwork and Reischuk [1]) If 0 ≤ u < n, index u affects shared-

I

a

memory cell c at time t on input I if the contents of c at time t is different on inputs

nd I(u).

Definition 3.3 (Cook, Dwork and Reischuk [1]) If 0 ≤ u < n, index u affects processor p

D

at time t on input I if the state of p at time t is different on inputs I and I(u).

efinition 3.4 A PRAM is called persistent if the following two properties hold:

-1. If index u affects processor p at time t−1 on input I, then index u affects proces

sor p at time t on input I.

2. If index u affects cell c at time t−1 on input I and processor p reads cell c at time

T

t on input I(u), then index u affects processor p at time t on input I.

he following two definitions are mutually recursive.

D

- 6 -

efinition 3.5 If 0 ≤ u < n, index u counsels shared-memory cell c at time t on input I

if either t = 0 and c is the i shared-memory cell, or t > 0 and either:th

(1) no processor writes into c on input I at time t and either:

(

(i) u counsels c at time t−1 on input I, or

ii) there exists a processor p which writes into c at time t on input I(u), or

(2) some processor p writes into cell c at time t on input I, and either:

(i) no processor writes into cell c at time t on input I(u), or

:(ii) some processor p′ writes into cell c at time t on input I(u) and either

(a) p′ ≠ p, or

(b) p′ = p and u counsels processor p at time t on input I.

:

(

Definition 3.6 For 0 ≤ u < n, index u counsels processor p at time t on input I if either

1) t > 1 and u counsels p at time t−1 on input I, or

-(2) t ≥ 1, u counsels some cell c at time t−1 on input I and p reads c at time t on in

put I.

The definition of counseling is weaker than that of affecting in the sense the only way

t

c

that an index u can affect a cell or a processor at time t on input I is to counsel tha

ell or processor at time t on input I. The converse is not necessarily the case (that is,

,

p

not all counselling leads to an affectation) since, for example, in Definition 3.5 (1) (ii)

rocessor p may at time t (fortuitously) write into cell c the same value that it con-

tained at time t-1.

- 7 -

f

(

Definition 3.7 A PRAM is called predictable i

i) it is persistent, and

(ii) every index u which counsels a cell or processor at time t on input I also affects

(

that cell or processor at time t on input I, for all inputs I and t ≥ 1, and

iii) if the state of processor p at time t on input I is the same as the state of pro-

2

1 1 1

2 2 1 2 1 2.

W

cessor p at time t on input I then t = t and p = p

e can conclude from the observation preceding Definition 3.7 that not every PRAM

e

e

is predictable. However, the following result will enable us to take advantage of th

xtra structure which is present in a predictable PRAM.

.

P

Lemma 3.8 For every PRAM there exists an equivalent predictable PRAM

roof. Let M be a T(n) time-bounded PRAM. Define a new PRAM M′ as follows.

t

M′ simulates M, with processor p of M′ at time t simulating processor p of M at time

, subject to the following modifications. Let p = 2 and for i ≥ 1, p be the smallest

i−1

0 i

.

(

prime number exceeding p

1) Suppose processor p of M′ was in state q at time t−1. If q ≠ 0 then it factors q

into a product of prime powers:

Q = p p Π p
q

1

t−1

i+
1

0
t−1

1
p

i=
i

w ihere q ∈ NN for 1 ≤ i ≤ t−1. The state of processor p of M at time t-1 can be com-

c

puted from the sequence of values that it read during the first t-1 steps of the

omputation. The sequence q ,...,q is used for that purpose. If q = 0, then the1 t−1

.state of processor p of M is taken to be 0

- 8 -

-(2) Using the state of processor p of M at time t-1 determined in step (1), it ascer

tains which cell in the shared memory that processor p of M will read from at

p

time t, and reads a value v from that cell. It factors v into a product of prime

owers:

v = p p Π p
′v
1

t′

i+
1

0
t′

1
p′

i=
i

w ihere v′ ∈ NN for 1 ≤ i ≤ t−1. The value v was written there by processor p′ at time

e

o

t′. The value that processor p′ of M would have written into that cell can b

btained by the sequence of values read by processor p′ of M in the first t′ steps

of the computation. The sequence of values v′ ,...,v′ is used for that purpose.1 t′

e(3) Using the state of processor p of M at time t-1 determined in (1), and the valu

which processor p of M read from the shared-memory at time t determined in (2),

s

it computes the place in the shared-memory into which the new state w of proces-

or p of M at time t should be written.

(4) Finally, it computes its own new state 2qp and writes this into the shared-v
1

T

memory in place of w.

t+

he correctness of the simulation can be verified by induction on t. Some extra pre-

i

processing of the inputs to M is necessary before they can be presented to M′. Each

nput symbol x should be replaced by 5 . Some post-processing of the output of M′ is

a

x

lso necessary to obtain the output of M. The output of M′ is be decomposed into a

product of prime powers:

p p Π p
q

1

T(n)

i+
1

0
T(n)

1
p

i=
i

)w i T(nhere q ∈ NN for 1 ≤ i ≤ t−1. The output of M is then q .

W

- 9 -

e claim that M′ is predictable. Condition (1) of Definition 3.7 requires that M′

s

be persistent. Suppose index u affects processor p of M′ at time t-1 on input I. Then

tate q is different on inputs I and I(u) in (1) above, which implies that the new state

2qp of processor p of M′ computed in (4) above is also different on inputs I andt+1

I

v

(u), that is, u affects processor p of m′ at time t on input I. Now suppose that index u

t

t

affects cell c of M′ at time t-1 on input I and that processor p of M′ reads cell c a

ime t on input I(u). There are two cases to consider.

m

t

Case 1. Processor p does not read cell c at time t on input I. Since it does read fro

here on input I(u), it follows that u must affect processor p at time t on input I.

e

m

Case 2. Processor p reads cell c at time t on input I. The value v read in (2) abov

ust be different on I and I(u). Thus the new state 2qp computed in (4) must differv
1t+

-

c

on I and I(u), that is, index u affects processor p at time t on input I. Thus we con

lude that M′ is persistent.

Next we must demonstrate that property (ii) of Definition 3.7 holds, that is, all t

,

t

and I, if index u counsels shared-memory cell c or processor p at time t on input I

hen u affects shared-memory cell c or processor p, respectively, at time t on input I.

p

The proof is by induction on t. The hypothesis is certainly true for t = 0. Now sup-

ose that t > 0 and that the hypothesis is true at time t−1. Let I be an arbitrary input,

C

and u an arbitrary index.

ase 1 Let p be a processor, and suppose that index u counsels p at time t on input I.

C

Then by Definition 3.6, either:

ase 1.1 u counsels p at time t-1 on input I, which implies by the induction hypothesis

that u affects p at time t-1 on input I. Since M′ is persistent, it follows that u affects p

- 10 -

C

at time t on input I.

ase 1.2 u counsels some cell c at time t-1 on input I and p reads cell c at time t on

′

i

input I. By the induction hypothesis, u affects cell c at time t-1 on input I. Since M

s persistent, this implies that u affects p at time t on input I.

t

o

Case 2 Let c be a shared-memory cell, and suppose that index u counsels c at time

n input I. Then by Definition 3.5 either:

:

C

Case 2.1 No processor writes into c at time t on input I and either

ase 2.1(i) u counsels c at time t-1 on input I, which by the induction hypothesis

t

I

implies that u affects c at time t-1 on input I, and so u must affect c at time t on inpu

.

Case 2.1(ii) There exists a processor p which writes into c at time t on input I(u). On

einput I(u), cell c contains at time t a value which is divisible by 2 . This is not tht

C

case on input I. Therefore u affects c at time t on input I.

ase 2.2 Some processor p writes into c at time t on input I and either:

s

c

Case 2.2(i) No processor writes into c at time t on input I(u). The argument in thi

ase is similar to Case 2.1(ii) above.

Case 2.2(ii) Some processor p′ writes into cell c at time t on input I(u) and either:

e

i

Case 2.2(ii)(a) p′ ≠ p. Without loss of generality, assume that p > p′. Then the valu

n cell c at time t on input I is divisible by 3 , whereas the value in cell c at time t on

C

input I(u) is not.

p

ase 2.2(ii)(b) p′ = p and u counsels processor p at time t on input I. By Case 1

tabove, u affects processor p at time t on input I, and hence the values written into c a

- 11 -

I

time t are different on inputs I and I(u).

n either case, index u affects cell c at time t on index I.

-

c

Finally, property (iii) of Definition 3.7 is easy to verify, since the state of all pro

essors is uniquely ‘‘stamped’’ with its identity number and the time. This completes

4

the proof that M′ is predictable. `

. The Lower-Bound.

Lemma 4.1 Let M be a PRAM. Suppose p ≠ p are two processors, c is a shared-u v

vm uemory cell, and I an input. If p writes into cell c at time t on input I(u) and p

)writes into cell c at time t on input I(v), then either u affects p at time t on input I(vv

o ur v affects p at time t on input I(u).

Proof. For a contradiction, assume the opposite and consider what happens at time t.

On input I(u), p writes into c. Since by hypothesis v does not affect p at time t onu u

i unput I(u), p must write into c at time t on input I(u)(v). A similar argument shows

tthat p must also write into c at time t on input I(u)(v), which contradicts the fact thav

our PRAMs are exclusive-write. `

(

Definition 4.2

i) K(p,t,I) is the set of indices which affect processor p at time t on input I.

(ii) K(t) = max eK(p,t,I) e .
p,I

(iii) L(c,t,I) is the set of indices which affect cell c at time t on input I.

(iv) L(t) = max eL(p,t,I) e .
p,I

- 12 -

-

p

Lemma 4.3 Let M be a predictable PRAM, c a shared-memory cell of M, and I an in

ut. Suppose u∈ L(c,t,I). For all v∈ L(c,t,I), u ≠ v, there exists a processor p such that

(

one of the following holds. Either:

i) u∈ L(c,t,I(v)), or

r

(

(ii) v∈ L(c,t,I(u)), o

iii) u,v∈ K(p,t,I).

Proof. Suppose that hypotheses (i) and (ii) do not hold. Let t ≤ t be the last stepu

vb uefore t in which some processor p writes into c on input I(u), t ≤ t be the last step

tbefore t in which some processor p writes into c on input I(v), and t′ ≤ t be the lasv

u v e

u

step before t in which some processor p′ writes into c on input I. If any of t ,t ,t′ ar

ndefined, set them equal to zero. Note that since u ≠ v, at least one of t ,t ,t′ is non-

C

zero. There are two cases to consider:

u v

ase 1 t′ ≥ t ,t . Since u and v both affect c at time t on input I, they must both affect

p

u v

′ at time t′ on input I, that is, u,v∈ K(p′,t′,I), which, since M is persistent, satisfies

C

hypothesis (iii).

ase 2 t′ < max(t ,t). Without loss of generality, assume that t ≥ t ,t′. Let S(c,t,I)

d

u v u v

enote the contents of cell c at time t on input I. Then:

S(c,t ,I(u)) = S(c,t,I(u))u

= S(c,t,I(u)(v))

since by hypothesis v does not affect c at time t on input I(u). Also, by a similar

argument:

S(c,t ,I(v)) = S(c,t,I(u)(v))v

- 13 -

Therefore:

S(c,t ,I(u)) = S(c,t ,I(v))u v

u v u v s

u

Thus since M is predictable, we can conclude that p = p and t = t . Thu

,v∈ K(p ,t ,I), which satisfies property (iii) since M is persistent. `

L

u u

emma 4.4 Let E⊆ K(p,t,I), and u∈ E. Let Y(u) be the set of indices v∈ E such that

either u affects p at time t on input I(v), or v affects p at time t on input I(u). Then

eY(u) e ≥ eE e−K(t−1).

Proof. Let E⊆ K(p,t,I) and u,v∈ E. There are two cases to consider:

.

A

Case 1 u∈ K(p,t−1,I). It is sufficient to demonstrate that if v∈/ Y(u) then v∈ K(p,t−1,I)

ssume that v∈/ Y(u), and for a contradiction assume that v∈/ K(p,t−1,I). Let S(I)

h

denote the state of processor p at time t−1 on input I. Then S(I) = S(I(v)) since, by

ypothesis, v does not affect p at time t-1 on input I, and S(I(v)) = S(I(u)(v)) since M

t

S

is persistent and (since v∈/ Y(u)) u does not affect p at time t on input I(v). Bu

(I(u)) = S(I(u)(v)) by a similar argument, while S(I) ≠ S(I(u)) since u∈ K(p,t−1,I).

Thus:

S(I) = S(I(v)) = S(I(u)(v)) = S(I(u)) ≠ S(I)

.

C

which is a contradiction. Therefore it must be the case that v∈ K(p,t−1,I)

ase 2 u∈/ K(p,t−1,I). If v∈ K(p,t−1,I) then by an argument similar to Case 1 (inter-

s

changing u and v) we see that u∈ Y(v), or equivalently, v∈ Y(u). If v∈/ K(p,t−1,I), then

ince u,v∈/ K(p,t−1,I) and M is predictable, it must be the case that both u and v affect

u

some cell c at time t-1 on input I and p reads cell c at time t on input I. Thus

,v∈ L(c,t−1,I), and so by Lemma 4.3, one of the following holds. Either:

(

- 14 -

i) u∈ L(c,t−1,I(v)), which, since M is predictable, implies that u∈ K(p,t,I(v)); that is,

(

v∈ Y(u).

ii) v∈ L(c,t−1,I(u)), which by a similar argument implies that v∈ Y(u).

t(iii) there exists a processor p′ such that u,v∈ K(p′,t−1,I). Thus, although v may no

be a member of Y(u), there are at most K(t−1) choices for such a v.

t

m

Thus we have shown that there are at most K(t−1) members of K(p,t,I) which are no

embers of Y(u), which implies that eY(u) e ≥ eE e−K(t−1). `

s

p

The proof of Lemma 4.4 relies heavily on the fact that the PRAM in question i

redictable. The corresponding result for ordinary PRAMs, which is implicit in Cook,

i

Dwork and Reischuk [1], gives eY(u) e ≥ eE e−K(t). This is the crux of our improvement

n the lower-bound.

Lemma 4.5 For a predictable PRAM, when t ≥ 1, L(t) ≤ 3×4 .t

0Proof. We will prove that for a predictable PRAM, K(0) = 0, L(0) = 1 and for t ≥

K(t) ≤ K(t−1) + L(t−1) (1)

)

O

L(t) ≤ 3 (K(t−1) + L(t−1)) (2

nce this is established, it can easily be verified by induction that for t ≥ 1, K(t) ≤ 4 1

t−1

t−

.and L(t) ≤ 3×4

The proof is by induction on t. The hypothesis is certainly true for t = 0. Now

n

i

suppose that the hypothesis is true at time t−1. If u affects processor p at time t o

nput I, then either u affects p at time t−1 on input I or u affects some shared-memory

cell c at time t−1 on input I (which p subsequently reads). Therefore:

K(p,t,I) ≤ K(p,t−1,I)+L(c,t−1,I)

≤ K(t−1)+L(t−1)

- 15 -

which implies inequality (1) as required.

Suppose that index u affects a cell c at time t on input I. Then either:

f

i

Case 1 No processor writes into c at time t on input I. Let Y(c,t,I) be the set o

ndices u which cause some processor to write into c at time t on input I(u). Then

clearly:

eL(c,t,I) e ≤ eL(c,t−1,I) e+ eY(c,t,I) e

which implies that:

eL(c,t,I) e ≤ L(t−1)+ eY(c,t,I) e (3)

rIt remains to show a bound on eY(c,t,I) e . For each u∈ Y(c,t,I), let p be the processou

)

s

which writes into c at time t on input I(u). Let Z(c,t,I) be the set of ordered pairs (u,v

uch that u,v∈ Y(c,t,I) and either u affects p at time t on input I(v) or v affects p atv u

t

p

time t on input I(u). For each u there are at most K(t) choices of v which can affec

at time t on input I(u). Thus:u

eZ(c,t,I) e ≤ 2 eY(c,t,I) eK(t)

d

a

(the factor of two comes from the fact that each (u,v)∈ Z(c,t,I) has also been counte

s (v,u)).

Let E(u) be the set of indices v∈ Y(c,t,I) which cause p to write into c at time tu

n

a

on input I(v). For every u∈ Y(c,t,I), (u,v)∈ Z(c,t,I) for all v∈/ E(u) by Lemma 4.1. I

ddition, there are at least eE(u) e−K(t−1) choices of v∈ E(u) such that (u,v)∈ Z(c,t,I) by

Lemma 4.4. Therefore:

eZ(c,t,I) e ≥ eY(c,t,I) e ((eY(c,t,I) e− eE(u) e)+(eE(u) e−K(t−1)))

= eY(c,t,I) e (eY(c,t,I) e−K(t−1))

:Therefore we have

- 16 -

)eY(c,t,I) e (eY(c,t,I) e−K(t−1)) ≤ eZ(c,t,I) e ≤ 2 eY(c,t,I) eK(t

:which implies that

eY(c,t,I) e ≤ 2K(t) + K(t−1)

which when substituted into inequality (3) tells us that:

eL(c,t,I) e ≤ L(t−1) + 2K(t) + K(t−1)

.

C

from which we can easily deduce inequality (2) by application of inequality (1)

ase 2 Some processor p writes into c at time t on input I and either:

t

p

Case 2(i) no processor writes into cell c at time t on input I(u). Then u must affec

rocessor p at time t on input I, that is, u∈ K(p,t,I).

:

C

Case 2(ii) some processor p′ writes into c at time t on input I(u) and either

ase 2(ii)(a) p′ ≠ p. Then u must affect processor p at time t on input I, and again

C

u∈ K(p,t,I).

ase 2(ii)(b) p′ = p and u affects processor p at time t on input I. Then immediately

I

u∈ K(p,t,I).

n both Case 2(i) and 2(ii) we see that:

eL(c,t,I) e ≤ eK(p,t,I) e ≤ K(t) ≤ K(t−1)+L(t−1)

(making use of inequality (1)), which implies that:

L(t) ≤ K(t−1)+L(t−1) ≤ 3(K(t−1)+L(t−1))

as required. `

- 17 -

lDefinition 4.6 Let B = {0,1}. If f:B →B, I∈ B is called a critical input for f if for al* n

n

B

0 ≤ u < n, f(I) ≠ f(I(u)). We call f a critical function if for all n ≥ 1 there is an input i

which is critical for f.

T

n

heorem 4.7 Any PRAM which computes a critical function on n inputs must take

P

time at least 0.5 log n − O(1).

roof. Suppose M is a PRAM which computes a critical function f in time T(n).

b

Without loss of generality we can assume that M is predictable (by Lemma 3.8). Let I

e a critical input for f. Then eL(0,T(n),I) e = n. But Lemma 4.6 tells us that

eL(0,T(n),I) e ≤ 3×4 . Therefore T(n) ≥ 0.5 log n − O(1). `T(n)

.5. The Upper-Bound

In this section we will demonstrate a critical function which can be computed

w

quickly on a PRAM. For the purposes of exposition we will present an algorithm

hich attempts to compute the Boolean OR of its inputs. The algorithm will fail for

i

two reasons. Firstly, it will get the result wrong for many inputs. Secondly, some

nput symbols will be lost, that is, there will be indices u such that u does not affect

l

d

the output cell when the algorithm has terminated on any input. However, we wil

emonstrate that the function computed by the algorithm is critical (the all-zero input

r

will be critical), and that it is a function of sufficiently many input symbols for the

equired time-bound to hold.

The faulty algorithm for computing the OR of n bits proceeds as follows. Sup-

l

a

pose that n is a power of four. During each step of the algorithm, the PRAM wil

ttempt to reduce the number of bits to be processed by a factor of four by ORing

t

- 18 -

ogether groups of four bits. At time t there will be a set of cells C(t) which contain

-

s

sub-results. C(0) = {0,1,...,n-1}. For each cell c at time t there will be a set of proces

ors P(c,t) which write into c at time t on some input (although at most one member of

t

P

P(c,t) will do so on any particular input). P(c,0) = ∅ for c ≥ 0. We will ensure tha

(c ,t)∩P(c ,t) = ∅ when c ≠ c . At time t, each cell c will contain a value v(c,t)1 2 1 2

t′which is either zero or of the form 2 where t′ ≤ t is the last time that c was written

into (t′ is zero if c has not yet been written into).

In the first step of the algorithm, processor p reads the contents of cell p and

s

C

writes two back there if the value read was one, in parallel for 0 ≤ p < n. Thu

(1) = C(0) and P(c,1) = {c} for 0 ≤ c < n. At time t, for t > 1, the values from cells

c = a4 +i4i
t−1 t−2

0 f

a

for 0 ≤ i < 4 are examined, and an attempt is made to place a non-zero value into c i

t least one of their values is non-zero, in parallel for 0 ≤ a < n/4 . Thus by induction

on t, for t ≥ 1 it can be shown that

t−1

C(t) = {a4 e 0 ≤ a < n/4 }

A

t−1 t−1

t time t the following algorithm is used. Note that we adopt the convention that

log 0 = 0.2

Algorithm 1.

Processors in P(c ,t−1) each perform the following:1

3
t
Read a value v from cell c

:=log v3 2

1 nif I wrote into cell c at time t-1 the
if t ≠ t−1 then write 2 into cell c03

t

- 19 -

:Processors in P(c ,t−1) each perform the following2

1
t
Read a value v from cell c

:=log v1 2

2 nif I wrote into cell c at time t-1 the
if t ≠ t−1 then write 2 into cell c01

t

3Processors in P(c ,t−1) each perform the following:
Read a value v from cell c2
t2 2:=log v
if I wrote into cell c at time t-1 then3

0i 2
tf t ≠ t−1 then write 2 into cell c

n

t

We claim that there are no write-conflicts at time t. The proof is by induction o

. The hypothesis is certainly true for t = 1. Now suppose that the hypothesis is true at

time t-1. Thus we know that at most one processor from each of P(c ,t−1) wrote intoi

c iell c respectively at time t-1, for 1 ≤ i ≤ 3. From Algorithm 1 we deduce that

P(c ,t) = ∪ P(c ,t−1). Therefore the only possible write-conflicts may occur between0
i=1

3

i

1 1 2 2 3 3 .

C

some processors p ∈ P(c ,t−1), p ∈ P(c ,t−1), and p ∈ P(c ,t−1)

ase 1. p writes into cell c at time t-1 and p writes into cell c at time t-1. Then

1

1 1 2 2

0 .

C

only p writes into c at time t

ase 2. p writes into cell c at time t-1 and p writes into cell c at time t-1. Then

3

1 1 3 3

0 .

C

only p writes into c at time t

ase 3. p writes into cell c at time t-1 and p writes into cell c at time t-1. Then

2

2 2 3 3

0 .

C

only p writes into c at time t

ase 4. p writes into cell c at time t-1, p writes into cell c at time t-1 and p31 1 2 2

3 0 .

T

writes into cell c at time t-1. Then no processor writes into cell c at time t

he aim of Algorithm 1 is to make c at time t contain the Boolean OR of c , c , c2

a 3

0 0 1

nd c at time t-1, in the sense that the former is to be non-zero if any of the latter are.

T

- 20 -

his does not happen in Case 4, preventing the algorithm from computing the Boolean

e

a

OR of n inputs. This is not a major concern, however, since our aim is to have th

lgorithm compute some critical function. Unfortunately, it does not compute a critical

function of all n inputs. Let F (t) be the number of indices which affect a cell c∈ C(t)1

at time t on the all-zero input (due to the symmetry of the algorithm, this value will be

tthe same for all such c). Then cell c ∈ C(t) contains a non-zero value at time t if i0

1 2 3

a

contained a non-zero value at time t-1 or some processor wrote into cells c , c or c

t time t-1. Cell c is affected by F (t−1) indices at time t-1, and is affected by

F1

1 1

(t−2) indices at time t-2. Therefore any processor which writes into it at time t-1 is

affected by F (t−1) − F (t−1) indices. This processor also writes into c at time t. A1 2 0

s 2 3imilar argument holds for cells c and c . Because the first step of the algorithm is a

special case, we are justified in taking F (0) = 0 and F (1) = 1. For t > 1,1 1

F1 1 1(t) = 4F (t−1) − 3F (t−2)

nTherefore F (t) = (3 −1)/2. Thus we compute a critical function on n inputs i1
t

l 3og n + O(1) steps, a bound which appears in Cook, Dwork and Reischuk [1].

.Now suppose that the value in cells c , c and c at time t-2 is identical for t > 11 2 3

32 2

c

This can be achieved by making the input symbols which affect c and c at time t-

opies of the input symbols which affect c at time t-1. We modify Algorithm 1 as

follows:

1

- 21 -

Algorithm 2.

Processors in P(c ,t−1) each perform the following:1

3
t
Read a value v from cell c

:=log v3 2

1 nif I wrote into cell c at time t-1 the
if t = 0 then write 2 into cell c03

t

3else if 0 < t ≤ t−2 then
if I am the smallest-numbered processor in P(c ,t−1)

t
0

1
c

P

then write 2 into cell

rocessors in P(c ,t−1) each perform the following:2

1
t
Read a value v from cell c

:=log v1 2

2 nif I wrote into cell c at time t-1 the
if t = 0 then write 2 into cell c01

t

3Processors in P(c ,t−1) each perform the following:
Read a value v from cell c2
t2 2:=log v
if I wrote into cell c at time t-1 then3

0i 2
tf t = 0 then write 2 into cell c

.

T

We claim that there are no write-conflicts at time t. The proof is by induction on t

he hypothesis is certainly true for t = 1. Now suppose that the hypothesis is true at

time t−1. Let

v = v(c ,t−2) = v(c ,t−2) = v(c ,t−2)

C

1 2 3

ase 1. v > 0. Since the values in each cell are monotonically nondecreasing with

ntime, we know that t > 0 for 1 ≤ i ≤ 3. Since t > 0, the smallest-numbered processor ii 3

1P 1 0(c ,t−1) may write into c at time t, and if any other processor from P(c ,t−1) wrote

into c at time t−1, then it is prevented from writing into c at time t. Since t > 0, no1 0 1

p 2 0 2rocessor in P(c ,t−1) writes into c at time t, and since t > 0, no processor in

P(c ,t−1) writes into c at time t3 0

i i n

a

Case 2. v = 0. For 1 ≤ i ≤ 3, either t = 0 or t = t−1. Therefore Algorithm 2 behaves i

manner identical to Algorithm 1, and so the same arguments prevent a write-conflict

from occurring in this case.

- 22 -

Note that Algorithm 2 does not compute the same function as Algorithm 1. Let

tF (t) be the number of indices which affect a cell c∈ C(t) at time t on the all-zero inpu2

(due to the symmetry of the algorithm, this value will be the same for all such c).

Then F (0) = 0, F (1) = 1 and for t > 1:2 2

2 2 2)

T

F (t) = 4F (t−1) − 2F (t−2

herefore F (t) = a((2+ 2) −b) where a =
4(2 2+3)

3 2+4hhhhhhhhh and b = 1+
2

h1hh .2
t −t√dd

√dd
√dd

√dd

2 n

t

Theorem 5.1 There is a critical function which can be computed on F (t) inputs i

+O(1) steps by a PRAM using 4 processors.

P 2

t

roof. Suppose we are given F (t) input bits for some t ≥ 0. These bits are expanded

fto give 4 bits by making multiple copies of each bit according to the requirements ot

tAlgorithm 2. Each processor p, 0 ≤ p < 4 examines the tree structure of the algorithm

t

a

and determines which input bit that cell p should be a copy of. It then reads that bi

nd writes it into cell p. This takes two PRAM steps. Algorithm 2 is then executed in

C

parallel t times. The total run-time is thus t+O(1) steps. `

orollary 5.2 There is a critical function which can be computed in time log n + O(1)

d

c

√dd .

6

on n processors where c = 2+ 2 and d = 2/log c < 1.13

. Conclusion and Open Problems.

We have moved the upper and lower-bounds for the computation of critical func-

m

tions on PRAMs closer together. The major remaining open problem is to make them

eet. Our lower-bound holds for PRAMs which have powerful processors and can

hread and write large values. Can a better lower-bound be found for PRAMs whic

- 23 -

d

R

write only zeros and ones? Our upper-bound differs from that of Cook, Dwork an

eischuk [1] in that it makes use of large values. Is this necessary? Is it possible to

t

i

obtain better bounds for the computation of Boolean OR (which appears to be the mos

nteresting critical function)? The best known upper-bound (which appears in [1]) is

7

approximately 0.73 log n + O(1).

. References

1. S. Cook, C. Dwork, and R. Reischuk, ‘‘Upper and lower time bounds for parallel

,

n

random access machines without simultaneous writes,’’ SIAM J. Comput., vol. 15

o. 1, pp. 87-97, Feb. 1986.

2. S. A. Cook and C. Dwork, ‘‘Bounds on the time for parallel RAMs to compute

.

2

simple functions,’’ Proc. 14th Ann. ACM Symp. on Theory of Computing, pp

31-233, San Francisco, CA, May 1982.

h3. S. Fortune and J. Wyllie, ‘‘Parallelism in random access machines,’’ Proc. 10t

Ann. ACM Symp. on Theory of Computing, pp. 114-118, 1978.

-4. L. M. Goldschlager, ‘‘Synchronous parallel computation,’’ Ph. D. Thesis, Techni

cal Report TR-114, Dept. of Computer Science, Univ. of Toronto, Dec. 1977.

’5. L. M. Goldschlager, ‘‘A universal interconnection pattern for parallel computers,’

J. Assoc. Comput. Mach., vol. 29, no. 4, pp. 1073-1086, Oct. 1982.

.6. I. Parberry, ‘‘A complexity theory of parallel computation,’’ Ph. D. Thesis, Dept

of Computer Science, Univ. of Warwick, May 1984.

l7. I. Parberry, ‘‘Parallel speedup of sequential machines: a defense of the paralle

computation thesis,’’ SIGACT News, vol. 18, no. 1, pp. 54-67, 1986.

8

- 24 -

. I. Parberry, Parallel Complexity Theory, Research Notes in Theoretical Computer

9

Science, Pitman Publishing, London, 1987.

. I. Parberry and P. Y. Yan, ‘‘Improved upper and lower time bounds for parallel

l

C

random access machines without simultaneous writes,’’ Proc. 1989 Internationa

onference on Parallel Processing, vol. 3, pp. 226-233, St. Charles, IL, Aug.

1

1989.

0. R. Reischuk, ‘‘A lower time-bound for parallel random-access machines without

.

1

simultaneous writes,’’ Research Report RJ3431, IBM Research, San Jose, Mar

982.

11. Y. Shiloach and U. Vishkin, ‘‘Finding the maximum, sorting and merging in a

1

parallel computation model,’’ J. Algorithms, vol. 2, pp. 88-102, 1981.

2. H. Simon, ‘‘A tight Ω(log log n)-bound on the time for parallel RAM’s to com-

,

1

pute nondegenerated Boolean functions,’’ Inf. Control, vol. 55, pp. 102-107

982.

13. M. Snir, ‘‘On parallel searching,’’ SIAM J. Comput., vol. 14, no. 3, pp. 688-708,

1

Aug. 1985.

4. P.Y. Yan, ‘‘Lower bound techniques in some parallel models of computation,’’

Ph.D. Thesis, Dept. of Mathematics, Penn State University, 1989.

