Improved Upper and Lower Time Bounds for Parallel Random
Access Machines without Simultaneous Writes

lan Parberry

Department of Computer Science,
333 Whitmore Laboratory,
The Pennsylvania State University,
University Park, Pa. 16802.

Pel Yuan Yan

Department of Mathematics,
407 McAllister Building,
The Pennsylvania State University,
University Park, Pa. 16802.

ABSTRACT

The time required by a variant of the PRAM (a parallel machine
model which consists of sequential processors which communicate by
reading and writing into a common shared memory) to compute a cer-
tain class of functions called critical functions (which include the
Boolean OR of n hits) is studied. Simultaneous reads from individual
cells of the shared-memory are permitted, but simultaneous writes are
not. It is shown that any PRAM which computes a critical function
must take at least 0.5log n —O(1) steps, and that there exists a critical
function which can be computed in 0.57log n +O(1) steps. These
bounds represent an improvement in the constant factor over those pre-
viously known.

January 31, 1990

Improved Upper and Lower Time Bounds for Parallel Random
Access Machines without Simultaneous Writes

lan Parberry

Department of Computer Science,
333 Whitmore Laboratory,
The Pennsylvania State University,
University Park, Pa. 16802.

Pel Yuan Yan

Department of Mathematics,
407 McAllister Building,
The Pennsylvania State University,
University Park, Pa. 16802.

1. Introduction.

A PRAM consists of an infinite collection of sequential processors connected to a
common shared memory. In each time interval, or step, each processor reads a value
from the shared-memory, moves into a new state and writes this new state back into
the shared-memory. Simultaneous reads of a single cell in the shared-memory by
many processors are permitted, but simultaneous writes are not. Computation of a
function on n inputs proceeds by placing the n input values into the first n cells of the
shared-memory, starting the PRAM with al processors in a pre-defined initial state,
and waiting for all processors to halt. When the computation is over, the output can
be found in the first shared-memory cell. The running-time of the PRAM is defined to

be the number of steps taken, expressed as a function of n.

The lower-bound techniques discussed in this paper are based on a communica
tion argument, and thus hold even if the processors have infinite computational power.
Many of the *‘standard’”” models which have become popular in the recent literature

(for example, in Fortune and Wyllie [3], Goldschlager [4, 5], and Shiloach and Vishkin

-2-

[11]) limit the local computational power of the individual processors. More details on
the effect that this can have on the computational ability of PRAMs can be found in
Parberry [6-8]. Our upper-bound is intended to illustrate the limits of the lower-bound
technique by taking advantage of the unlimited computing power of the processors,
and is not intended as a practical algorithm. We will, however, use a number of pro-

cessors which is only a polynomial in the size of the input.

A Boolean function is said to be critical if there exists an input | with the pro-
perty that changing any single bit of | changes its output. One example of a critical
function is the Boolean OR of n bits (consider the all-zero input). The obvious paral-

lel agorithm for computing the Boolean OR of n bits uses ‘*successive doubling’’ and

takes time {Iogznl. (From this point on, al logarithms will be to base 2 unless other-

wise indicated). This intuitively seems to be a lower-bound, based on the number of
bits that a processor can ‘‘know about’’ at each point in time. Independently, Cook
and Dwork [2] and Reischuk [10] noticed that this ‘‘obvious’ lower-bound is
incorrect. These authors combined their results in [1]. From this reference we learn
that any PRAM which computes a critical function on n inputs must take time at |east
log,n where b=0.5(5+v21) is dlightly greater than 4.79. We will show that it must
take time at least logsn —O(1). From it we also learn that there is a critical function
that can be computed by a PRAM in time logzn +1. We will show that there is a crit-
ical function which can be computed by a PRAM in time log.n +O(1) where c=2+v2
is dightly greater than 3.41. The relationship between these results is summarized in
Tables 1.1 and 1.2. Other lower-bounds for PRAMs without simultaneous writes can

be found in Simon [12] and Snir [13].

Lower-Bound | Upper-Bound
Previous 0.44 0.64
Current 0.5 0.57

Table 1.1 Previous best-known upper and lower-bounds on the time required
for a PRAM to compute critical functions. Each entry in the table shows the

constant ¢ where the dominant term in the bounds is of the form clog n.

Lower-Bound | Upper-Bound
Previous 3 4.79
Current 341 4

Table 1.2 Previous best-known upper and lower-bounds on the number of input
symbols of a critical function that a PRAM can compute in t steps. Each entry
in the table shows the constant ¢ where the dominant term in the bounds is a

constant times c'.

The remainder of the paper is divided into four sections. The first describes the
PRAM model in more detail, whilst the second contains some preliminary results con-
cerning exclusive-write PRAMs. The lower and upper-bounds are contained in the
third and fourth sections, respectively. A preliminary version of the results in this
paper appeared as part of the second author’'s Ph. D. thesis [14], and in Parberry and

Yan [9].

2. The PRAM Model.

A PRAM consists of an infinite number of processors and an infinite shared
memory. The shared-memory is divided into cells, each of which is capable of hold-
ing a natural number (for the purposes of this paper, we count O as being a natura
number). Each processor has a state, which is also a natural number. The cells and

the processors are numbered consecutively from 0. More formally, a PRAM M con-

-4 -

sists of a triple (r,sw), where r,w:N3_ N, and ssN*~ N. An input to M consists of a
finite sequence of natural numbers | =(Xg,X4,....Xn-1). Each x; is called an input sym-
bol. At the start of the computation, x; is placed into cell i of the shared-memory,
0<i<n, whilst cell i for i=n is set to 0. Each processor is placed in state 0. The
computation on input | proceeds in a sequence of discrete steps. During the t step,
t>1, each processor p, p=0 does the following simultaneously. Suppose that p was in
state qON at the end of the (t-1)1" step (where the O step refers to a point in time

immediately before the computation began).

1. Read avaue v from shared-memory cell r(p,t,q).

2. Compute V' =s(p,t,q,v). The state of p at the end of the ti step is v'.
3. Write the value V' into cell w(p,t,v').

Simultaneous reads of a single shared-memory cell by many processors are permitted,
but simultaneous writes into a single cell are not. The output of M will be found in
shared-memory cell 0 when the processors have terminated. The time required by M
is the maximum over al inputs of size n of the number of steps needed to process that

input, expressed as a function of n.

For the purposes of our lower-bounds, we will be more lenient than is customary
in our definition of what it means for a PRAM to compute a function, in that we will
allow some pre-processing of the inputs before the computation begins, and post-
processing of the output after the computation ends. We say that a PRAM computes
f:N" =N if there exist functions o,:N-N such that the PRAM on input
0(Xg),a(Xy), . . . ,0(X,—1) produces output yLIN where [(y)=f(xq,....X,). For our

upper-bounds we will insist that no extra pre- or post-processing can be done, that is,

o and (3 are the identity functions.

We will say that two PRAMSs are functionally equivalent if they compute the
same function, and that they are equivalent if they are functionally equivalent and have

the same running time.

3. Persistence and Predictability in PRAMSs.

Definition 3.1 Let 1=(Xg,...Xp-1) {0, 1}" be an input string. Define
1(U) = (Xgy- e Xy—1.X Xy 11 Xn1), Where 0=1 and 1=0, to be the input which is identi-
ca to | except in the u™ hit.

Definition 3.2 (Cook, Dwork and Reischuk [1]) If O<u<n, index u affects shared-

memory cell ¢ a timet on input | if the contents of ¢ at time t is different on inputs |

and I(u).
Definition 3.3 (Cook, Dwork and Reischuk [1]) If O<u<n, index u affects processor p
at time t on input | if the state of p at time t is different on inputs | and I1(u).

Definition 3.4 A PRAM is called persistent if the following two properties hold:

1. If index u affects processor p at time t—1 on input |, then index u affects proces-

sor p at timet on input 1.

2. If index u affects cell ¢ at time t—1 on input | and processor p reads cell ¢ at time

t on input I(u), then index u affects processor p at timet on input |.

The following two definitions are mutually recursive.

-6-
Definition 3.5 If O0su<n, index u counsels shared-memory cell ¢ at time t on input |
if either t=0 and c is the i!" shared-memory cell, or t>0 and either:
(1) no processor writes into ¢ on input | at time t and either:
(i) ucounselsc at timet-1 oninput I, or
(ii) there exists a processor p which writes into ¢ at time t on input 1(u), or
(2) some processor p writes into cell ¢ at timet on input |, and either:
(i) no processor writes into cell ¢ at time t on input I(u), or
(i) some processor p' writes into cell ¢ at timet on input |(u) and either:
(@ pzpor
(b) p'=p and u counsels processor p at timet on input I.
Definition 3.6 For 0<u<n, index u counsels processor p at time t on input | if either:
(1) t>1and u counselsp at time t-1 on input I, or

(2) t=1, ucounsels some cell ¢ at time t—1 on input | and p reads c at time t on in-

put |.

The definition of counseling is weaker than that of affecting in the sense the only way
that an index u can affect a cell or a processor at time t on input | is to counsel that
cell or processor at timet on input I. The converse is not necessarily the case (that is,
not al counselling leads to an affectation) since, for example, in Definition 3.5 (1) (ii),
processor p may at time t (fortuitously) write into cell ¢ the same value that it con-

tained at time t-1.

-7-

Definition 3.7 A PRAM is called predictable if

(i) itis persistent, and

(ii) every index u which counsels a cell or processor at time t on input | also affects
that cell or processor at timet on input I, for al inputs | and t>1, and

(iii) if the state of processor p; at time t; on input 1, is the same as the state of pro-
cessor p, at timet, on input I, then t; =t, and p; =p,.

We can conclude from the observation preceding Definition 3.7 that not every PRAM

is predictable. However, the following result will enable us to take advantage of the

extra structure which is present in a predictable PRAM.
Lemma 3.8 For every PRAM there exists an equivalent predictable PRAM.

Proof. Let M be a T(n) time-bounded PRAM. Define a new PRAM M’ as follows.
M’ simulates M, with processor p of M’ at time t simulating processor p of M at time
t, subject to the following modifications. Let py=2 and for i=1, p; be the smallest

prime number exceeding p;_;.

(1) Suppose processor p of M" was in state g at time t-1. If q#0 then it factors g

into a product of prime powers:

t-1
Q=p§pf Mpidy

where g,CIN for 1<i<t-1. The state of processor p of M at time t-1 can be com-

puted from the sequence of values that it read during the first t-1 steps of the

computation. The sequence qy,...,G,_1 IS used for that purpose. If q=0, then the

state of processor p of M is taken to be O.

)

3

(4)

-8-

Using the state of processor p of M at time t-1 determined in step (1), it ascer-
tains which cell in the shared memory that processor p of M will read from at
time t, and reads a value v from that cell. It factors v into a product of prime

powers:

t

v=ppf Mpig
where V',CJN for 1<i<t-1. The value v was written there by processor p' at time
t'. The value that processor p' of M would have written into that cell can be
obtained by the sequence of values read by processor p' of M in the first t' steps

of the computation. The sequence of values v'4,...,V'y is used for that purpose.

Using the state of processor p of M at time t-1 determined in (1), and the value
which processor p of M read from the shared-memory at time t determined in (2),
it computes the place in the shared-memory into which the new state w of proces-

sor p of M at time t should be written.

Finally, it computes its own new state 2gp}; and writes this into the shared-

memory in place of w.

The correctness of the simulation can be verified by induction on t. Some extra pre-

processing of the inputs to M is necessary before they can be presented to M'. Each

input symbol x should be replaced by 5*. Some post-processing of the output of M’ is

also necessary to obtain the output of M. The output of M’ is be decomposed into a

product of prime powers:

T(Nn)
G
pg Wpp i';'l Pi1

where ;LN for 1<i<t-1. The output of M is then gr(,.

-9-

We claim that M’ is predictable. Condition (1) of Definition 3.7 requires that M’
be persistent. Suppose index u affects processor p of M’ at time t-1 on input 1. Then
state q is different on inputs | and I(u) in (1) above, which implies that the new state
2qgp, of processor p of M' computed in (4) above is aso different on inputs | and
I(u), that is, u affects processor p of m' at timet on input I. Now suppose that index u
affects cell ¢ of M" at time t-1 on input | and that processor p of M’ reads cell ¢ at

time t on input I(u). There are two cases to consider.

Case 1. Processor p does not read cell ¢ at timet on input I. Since it does read from

there on input I(u), it follows that u must affect processor p at timet on input 1.

Case 2. Processor p reads cell ¢ at timet on input |. The value v read in (2) above
must be different on | and I(u). Thus the new state 2gpY; computed in (4) must differ
on | and I(u), that is, index u affects processor p at timet on input I. Thus we con-

clude that M’ is persistent.

Next we must demonstrate that property (ii) of Definition 3.7 holds, that is, al t
and I, if index u counsels shared-memory cell ¢ or processor p at time t on input I,
then u affects shared-memory cell ¢ or processor p, respectively, at time t on input I.
The proof is by induction on t. The hypothesis is certainly true for t=0. Now sup-
pose that t>0 and that the hypothesis is true at time t—=1. Let | be an arbitrary input,

and u an arbitrary index.

Case 1 Let p be a processor, and suppose that index u counsels p at time t on input I.

Then by Definition 3.6, either:

Case 1.1 u counsels p at time t-1 on input |, which implies by the induction hypothesis

that u affects p at time t-1 on input I. Since M’ is persistent, it follows that u affects p

-10 -

at timet on input I.

Case 1.2 u counsels some cell ¢ at time t-1 on input | and p reads cell ¢ at time t on
input 1. By the induction hypothesis, u affects cell ¢ a time t-1 on input I. Since M’

is persistent, this implies that u affects p at time t on input I.

Case 2 Let ¢ be a shared-memory cell, and suppose that index u counsels c at time t

oninput I. Then by Definition 3.5 either:
Case 2.1 No processor writes into ¢ at time t on input | and either:

Case 2.1(i) u counsels c at time t-1 on input I, which by the induction hypothesis
implies that u affects ¢ at time t-1 on input 1, and so u must affect c at time t on input

Case 2.1(ii) There exists a processor p which writes into ¢ at timet on input I(u). On
input I(u), cell ¢ contains at time t a value which is divisible by 2. This is not the

case on input I. Therefore u affects ¢ at time t on input I.
Case 2.2 Some processor p writes into ¢ at time t on input | and either:

Case 2.2(1) No processor writes into ¢ at time t on input I(u). The argument in this

case is similar to Case 2.1(ii) above.
Case 2.2(ii) Some processor p' writes into cell ¢ at time t on input I(u) and either:

Case 2.2(ii)(a) p'#p. Without loss of generality, assume that p>p’. Then the value
in cell c at timet on input | is divisible by 3P, whereas the value in cell ¢ at time t on
input I(u) is not.

Case 2.2(ii)(b) p'=p and u counsels processor p at time t on input I. By Case 1

above, u affects processor p at time t on input |, and hence the values written into c at

-11 -

time t are different on inputs | and I(u).
In either case, index u affects cell ¢ at timet on index |I.

Finally, property (iii) of Definition 3.7 is easy to verify, since the state of al pro-
cessors is uniquely ‘‘stamped’’ with its identity number and the time. This completes

the proof that M’ is predictable. [

4. The Lower-Bound.

Lemma 4.1 Let M be a PRAM. Suppose p,Zp, &e two processors, C is a shared-
memory cell, and | an input. If p, writes into cell ¢ at time t on input I1(u) and p,
writes into cell ¢ at time t on input 1(v), then either u affects p, at time t on input [(v)

or v affects p, at time t on input 1(u).

Proof. For a contradiction, assume the opposite and consider what happens at time t.
On input I(u), p, writes into c. Since by hypothesis v does not affect p, at timet on
input 1(u), p, must write into ¢ at time t on input I(u)(v). A similar argument shows
that p, must also write into ¢ at time t on input 1(u)(v), which contradicts the fact that

our PRAMs are exclusive-write. [

Definition 4.2
(i) K(p,t,) isthe set of indices which affect processor p at timet on input |.

(i) K@O=max K@),
P,

(iii) L(ct,) isthe set of indices which affect cell ¢ at time t on input I.

(iv) L(t):meI\le(p,t,I)l.
P,

-12 -

Lemma 4.3 Let M be a predictable PRAM, ¢ a shared-memory cell of M, and | an in-
put. Suppose uClL(ct,l). For al vOL(ct,l), uzv, there exists a processor p such that

one of the following holds. Either:

() ubL(ct,I(v)), or

@it) vOL(ct,I(u), or

(iii) uvOK(p.t,1).

Proof. Suppose that hypotheses (i) and (ii) do not hold. Let t,<t be the last step
before t in which some processor p, writes into ¢ on input I(u), t,<t be the last step
before t in which some processor p, writes into ¢ on input I(v), and t'<t be the last
step before t in which some processor p' writes into ¢ on input I. If any of t,t,t" are
undefined, set them equal to zero. Note that since u#v, at least one of t,t,t" is non-

zero. There are two cases to consider:

Case 1 t'>t,t,. Since u and v both affect c at timet on input |, they must both affect
p' at time t' on input I, that is, u,vOK(p',t',I), which, since M is persistent, satisfies
hypothesis (iii).
Case 2 t'<max(t,t,). Without loss of generality, assume that t,>t,t'. Let S(ct,l)
denote the contents of cell c at timet on input |. Then:
S(etul (1) = SetI (W)
=S(ctI(u)(v))

since by hypothesis v does not affect ¢ at time t on input I(u). Also, by a similar

argument:

S(et,.1(v)) =S(c.tI(u)(v)

- 13-
Therefore:
S(e.tyl (W) =S(c .1 (V)
Thus since M is predictable, we can conclude that p,=p, and t,=t,. Thus

u,vOK (p,,.ty!1), which satisfies property (iii) since M is persistent. [

Lemma 4.4 Let EOK(p,t,I), and ulJE. Let Y(u) be the set of indices vLIE such that
either u affects p at time t on input I(v), or v affects p at time t on input I(u). Then
1Y (u)l = [EI-K (t-1).

Proof. Let EOK(p,t,l) and u,vOOE. There are two cases to consider:

Case 1 uJK(p,t=1,1). It is sufficient to demonstrate that if vIZIY (u) then vOOK(p,t—1,1).
Assume that vllY(u), and for a contradiction assume that vIIK(p,t-1,1). Let 1)
denote the state of processor p at time t—1 on input I. Then (1) =(I(v)) since, by
hypothesis, v does not affect p at time t-1 on input 1, and S(1(v)) = S(l(u)(v)) since M
is persistent and (since vIllY(u)) u does not affect p at time t on input I(v). But
S(I(w) =S(I(u)(v)) by a similar argument, while S(I)# S(I(u)) since uOK(p,t—1,).
Thus:

S(1) =S(1(v)) = (1 (u)(v)) = S(I(u)) # (1)
which is a contradiction. Therefore it must be the case that vOOK(p,t—1,1).

Case 2 ulllK(p,t—1,). If vOOK(p,t—=1,1) then by an argument similar to Case 1 (inter-
changing u and v) we see that ullY (v), or equivaently, vOY (u). If viIK(p,t—-1,1), then
since u,vIIK(p,t-1,1) and M is predictable, it must be the case that both u and v affect
some cell ¢ at time t-1 on input | and p reads cell ¢ a timet on input I. Thus

u,vOL(c,t-1,1), and so by Lemma 4.3, one of the following holds. Either:

-14 -

() uOL(ct=1,1(v)), which, since M is predictable, implies that uOK(p,t,I(Vv)); that is,
vy (u).

@ity vOL(ct=1,1(u)), which by a similar argument implies that vIY (u).

(iii) there exists a processor p' such that u,vOK(p',t-1,1). Thus, athough v may not

be a member of Y (u), there are at most K(t—1) choices for such av.

Thus we have shown that there are at most K(t—1) members of K(p,t,I) which are not

members of Y (u), which implies that Y (u)l = |EI-K(t-1). O

The proof of Lemma 4.4 relies heavily on the fact that the PRAM in question is
predictable. The corresponding result for ordinary PRAMS, which is implicit in Cook,
Dwork and Reischuk [1], gives Y (u)l = |[EI-K(t). Thisis the crux of our improvement

in the lower-bound.
Lemma 4.5 For a predictable PRAM, when t>1, L(t) < 3x4%

Proof. We will prove that for a predictable PRAM, K(0)=0, L(0)=1 and for t=0

K(t) <K(t-1) +L(t-1) Q)
L(t) <3 (K(t-1) +L(t-1)) 2
Once this is established, it can easily be verified by induction that for t=1, K(t) <41

and L(t) < 3x4"™L,

The proof is by induction on t. The hypothesis is certainly true for t=0. Now
suppose that the hypothesis is true at time t—=1. If u affects processor p at time t on
input I, then either u affects p at time t—1 on input | or u affects some shared-memory
cell ¢ at time t=1 on input | (which p subsequently reads). Therefore:

K(pt,) <K(p,t-1)+L(ct-1,1)
<K(t-1)+L(t-1)

- 15 -

which implies inequality (1) as required.
Suppose that index u affects a cell c at timet on input I. Then either:

Case 1 No processor writes into ¢ at time t on input . Let Y(ct,l) be the set of
indices u which cause some processor to write into ¢ at time t on input [(u). Then
clearly:

IL(ct,)I<IL(ct=1,D)I+IY(ct,DI
which implies that:

ILct)<L{t-D)+Y(ct)! (3)
It remains to show a bound on IY(ct,l)I. For each udY(c,t,l), let p, be the processor
which writes into ¢ at time t on input 1(u). Let Z(c,t,l) be the set of ordered pairs (u,v)
such that u,vJY(ct,l) and either u affects p, at time t on input 1(v) or v affects p, at
time t on input I1(u). For each u there are at most K(t) choices of v which can affect
p, a timet on input [(u). Thus:

1Z(ct,DI<2lY(ct)IK()

(the factor of two comes from the fact that each (u,v)00Z(c,t,l) has also been counted
as (v,u)).

Let E(u) be the set of indices vOY(c,t,l) which cause p, to write into c at time t
on input I(v). For every uldY(ct,l), (uv)OZ(ct,l) for al vilE(u) by Lemma 4.1. In
addition, there are at least |E(u)|-K(t—1) choices of VOE(u) such that (u,v)OZ(ct,1) by
Lemma 4.4. Therefore:

1Z(ct,DI = 1Y (e t,DI(Y (et D) I=IEU) N+(IE(u)-K(t-1)))

=Y (ctI(Y(ct)-K(t-1)

Therefore we have:

- 16 -

Y (et (1Y (et) I-K (=D))< 1Z(c,t1)] < 21Y (et 1) K (©)

which implies that:

Y (ct,1)l < 2K(t) + K(t-1)
which when substituted into inequality (3) tells us that:

IL(c,t,) < L(t-1) + 2K (t) + K(t-1)
from which we can easily deduce inequality (2) by application of inequality (1).

Case 2 Some processor p writes into ¢ at time t on input | and either:

Case 2(i) no processor writes into cell ¢ at time t on input I(u). Then u must affect

processor p at timet on input |, that is, uOJK(p,t,I).
Case 2(ii) some processor p' writes into ¢ at time t on input [(u) and either:

Case 2(ii)(@) p'#p. Then u must affect processor p at time t on input I, and again

uK(p,t,1).

Case 2(ii)(b) p'=p and u affects processor p at timet on input I. Then immediately

udK(p,t,1).

In both Case 2(i) and 2(ii) we see that:

IL(ct)I < IK(p,t,) <K(t) <K(t=1)+L(t-1)
(making use of inequality (1)), which implies that:

L(t) < K(t—=1)+L(t-1) < 3(K(t-1)+L(t-1))
as required. [

- 17 -

Definition 4.6 Let B={0,1}. If f:B" =B, I0B" is caled a critical input for f if for all
O<u<n, f(I)£f(I(u)). We cal f acritical function if for all n>1 there is an input in

B" which is critical for f.

Theorem 4.7 Any PRAM which computes a critical function on n inputs must take

time at least 0.5log n —O(1).

Proof. Suppose M is a PRAM which computes a critical function f in time T(n).
Without loss of generality we can assume that M is predictable (by Lemma 3.8). Let |
be a critica input for f. Then IL(0,T(n),)l=n. But Lemma 4.6 tells us that

IL(0,T(n),1)| <3x4T(™_ Therefore T(n)=0.5log n —O(1). O

5. The Upper-Bound.

In this section we will demonstrate a critical function which can be computed
quickly on a PRAM. For the purposes of exposition we will present an algorithm
which attempts to compute the Boolean OR of its inputs. The algorithm will fail for
two reasons. Firstly, it will get the result wrong for many inputs. Secondly, some
input symbols will be lost, that is, there will be indices u such that u does not affect
the output cell when the algorithm has terminated on any input. However, we will
demonstrate that the function computed by the algorithm is critical (the al-zero input
will be critical), and that it is a function of sufficiently many input symbols for the

required time-bound to hold.

The faulty algorithm for computing the OR of n bits proceeds as follows. Sup-
pose that n is a power of four. During each step of the algorithm, the PRAM will

attempt to reduce the number of bits to be processed by a factor of four by ORing

-18 -

together groups of four bits. At time t there will be a set of cells C(t) which contain
sub-results. C(0)={0,1,...,n-1}. For each cell c at time t there will be a set of proces-
sors P(c,t) which write into ¢ at time t on some input (although at most one member of
P(c,t) will do so on any particular input). P(c,0)=0 for c=0. We will ensure that
P(ci,t)nP(cot)=0 when c;#c,. At time t, each cell ¢ will contain a value v(c,t)
which is either zero or of the form 2! where t'<t is the last time that ¢ was written

into (t' is zero if ¢ has not yet been written into).

In the first step of the agorithm, processor p reads the contents of cell p and
writes two back there if the value read was one, in paralel for O<sp<n. Thus
C(1)=C(0) and P(c,1)={c} for O<c<n. Attimet, for t>1, the values from cells

G = a4t 1+ig2
for 0<i<4 are examined, and an attempt is made to place a non-zero value into ¢ if
at least one of their values is non-zero, in parallel for 0<a<n/4™1. Thus by induction
ont, for t>1 it can be shown that
Ct)={ad"tlo<a<n/4™Y}
At time t the following algorithm is used. Note that we adopt the convention that
l0og,0=0.

Algorithm 1.

Processors in P(c4,t—1) each perform the following:
Read a value v from cell c;
ty:=logov
if I wrote into cell c; at timet-1 then
if t;#t=1 then write 2t into cell ¢,

-19 -

Processors in P(c,,t—1) each perform the following:
Read a value v from cell c;
t;:=log,v
if 1 wrote into cell ¢, a time t-1 then
if t;#t-1 then write 2 into cell ¢,

Processors in P(c3,t—1) each perform the following:
Read a value v from cell ¢,
t,:=logov
if I wrote into cell c; at timet-1 then
if t,£t-1 then write 2t into cell ¢,

We claim that there are no write-conflicts at time t. The proof is by induction on
t. The hypothesis is certainly true for t=1. Now suppose that the hypothesis is true at
time t-1. Thus we know that at most one processor from each of P(c;,t—1) wrote into

cell ¢ respectively at time t-1, for 1<i<3. From Algorithm 1 we deduce that
3

P(co,t):_DlP(ci t-1). Therefore the only possible write-conflicts may occur between
1=

some processors p;P(cq,t-1), p,LIP(c,,t-1), and p3IP(cg,t—1).

Case 1. p, writes into cell ¢, at time t-1 and p, writes into cell ¢, at time t-1. Then

only p; writes into ¢, at time t.

Case 2. p; writes into cell ¢, at time t-1 and p3 writes into cell c; at time t-1. Then

only ps writes into ¢, at time t.

Case 3. p, writes into cell ¢, at time t-1 and p; writes into cell c; at time t-1. Then

only p, writes into ¢, at time t.

Case 4. p; writes into cell ¢, at time t-1, p, writes into cell ¢, at time t-1 and p;

writes into cell c3 at time t-1. Then no processor writes into cell ¢, at time t.

The aim of Algorithm 1 is to make ¢, at time t contain the Boolean OR of ¢y, ¢4, C,

and c; at time t-1, in the sense that the former is to be non-zero if any of the latter are.

- 20 -

This does not happen in Case 4, preventing the algorithm from computing the Boolean
OR of ninputs. This is not a maor concern, however, since our aim is to have the
algorithm compute some critical function. Unfortunately, it does not compute a critical
function of al ninputs. Let F(t) be the number of indices which affect a cell cJC(t)
at time t on the al-zero input (due to the symmetry of the algorithm, this value will be
the same for all such c). Then cell c,JC(t) contains a non-zero value at time t if it
contained a non-zero value at time t-1 or some processor wrote into cells ¢;, ¢, or c;
a time t-1. Cell c, is affected by Fy(t-1) indices at time t-1, and is affected by
F,(t-2) indices at time t-2. Therefore any processor which writes into it at time t-1 is
affected by F;(t—1) —F,(t-1) indices. This processor also writes into ¢y at time t. A
similar argument holds for cells ¢, and c;. Because the first step of the algorithm is a
special case, we are justified in taking F;(0) =0 and F;(1)=1. For t>1,
F(t) =4F;(t-1) — 3F(t-2)
Therefore Fy(t)=(3'-1)/2. Thus we compute a critical function on n inputs in

logzn +O(1) steps, a bound which appears in Cook, Dwork and Reischuk [1].

Now suppose that the value in cells ¢;, ¢, and c; at time t-2 is identical for t>1.
This can be achieved by making the input symbols which affect ¢, and c3 at time t-2
copies of the input symbols which affect c; at time t-1. We modify Algorithm 1 as

follows:

-21 -

Algorithm 2.

Processors in P(c,,t-1) each perform the following:
Read a value v from cell c5
ts:=logov
if I wrote into cell c; a time t-1 then
if t;=0 then write 2 into cell ¢,
else if O<ty3<t-2 then
if I am the smallest-numbered processor in P(cq,t—1)
then write 2 into cell ¢,
Processors in P(c,,t—1) each perform the following:
Read a value v from cell c;
t,:=log,v
if I wrote into cell ¢, a time t-1 then
if ;=0 then write 2! into cell ¢,

Processors in P(c3,t—1) each perform the following:
Read a value v from cell ¢,
to:=log,v
if I wrote into cell c5 at time t-1 then
if t,=0 then write 2! into cell ¢,

We claim that there are no write-conflicts at time t. The proof is by induction on t.
The hypothesis is certainly true for t=1. Now suppose that the hypothesis is true at
timet-1. Let
vV =v(Cq,t-2) =Vv(C,,t-2) =Vv(C3,t-2)

Case 1. v>0. Since the values in each cell are monotonically nondecreasing with
time, we know that t;>0 for 1<i<3. Since t;>0, the smallest-numbered processor in
P(cy,t-1) may write into ¢, at time t, and if any other processor from P(c;,t—1) wrote
into ¢, at time t-1, then it is prevented from writing into ¢, at time t. Since t; >0, no
processor in P(C,t—1) writes into ¢, at time t, and since t,>0, no processor in
P(cg,t—1) writes into ¢ at time t

Case 2. v=0. For 1<i<3, either t;=0 or t;=t-1. Therefore Algorithm 2 behaves in

a manner identical to Algorithm 1, and so the same arguments prevent a write-conflict

- 22 -

from occurring in this case.

Note that Algorithm 2 does not compute the same function as Algorithm 1. Let
F,(t) be the number of indices which affect a cell cJC(t) at time t on the all-zero input
(due to the symmetry of the algorithm, this value will be the same for all such c).
Then F,(0) =0, F5(1)=1 and for t>1:

Fz(t) = 4F2(t_1) - 2F2(t_2)

L 3V2+4 1
Therefore F,(t) = a((2+v2)'-b™) where a= ————— and b=1+—.
20 =a(2H/2)-b7) A(2V2+3) V2

Theorem 5.1 There is a critical function which can be computed on F,(t) inputs in
t+O(1) steps by a PRAM using 4' processors.

Proof. Suppose we are given Fy(t) input bits for some t=0. These bits are expanded
to give 4! bits by making multiple copies of each bit according to the requirements of
Algorithm 2. Each processor p, 0<p<4! examines the tree structure of the algorithm
and determines which input bit that cell p should be a copy of. It then reads that bit
and writes it into cell p. This takes two PRAM steps. Algorithm 2 is then executed in

parallel t times. The total run-time is thus t+O(1) steps. [

Corollary 5.2 There is a critical function which can be computed in time log.n +O(1)

on n? processors where c=2+v2 and d=2/log c<1.13.

6. Conclusion and Open Problems.

We have moved the upper and lower-bounds for the computation of critical func-
tions on PRAMSs closer together. The major remaining open problem is to make them
meet. Our lower-bound holds for PRAMs which have powerful processors and can

read and write large values. Can a better lower-bound be found for PRAMs which

-23-

write only zeros and ones? Our upper-bound differs from that of Cook, Dwork and
Reischuk [1] in that it makes use of large values. Is this necessary? Is it possible to
obtain better bounds for the computation of Boolean OR (which appears to be the most
interesting critical function)? The best known upper-bound (which appears in [1]) is

approximately 0.73log n + O(1).

7. References

1. S Cook, C. Dwork, and R. Reischuk, ‘‘Upper and lower time bounds for paralel
random access machines without simultaneous writes,”” SAM J. Comput., vol. 15,

no. 1, pp. 87-97, Feb. 1986.

2. S A. Cook and C. Dwork, ‘*Bounds on the time for parallel RAMs to compute
simple functions,”” Proc. 14th Ann. ACM Symp. on Theory of Computing, pp.

231-233, San Francisco, CA, May 1982.

3. S Fortune and J. Wyllie, *‘Parallelism in random access machines,”” Proc. 10th

Ann. ACM Symp. on Theory of Computing, pp. 114-118, 1978.

4. L. M. Goldschlager, ‘* Synchronous parallel computation,”” Ph. D. Thesis, Techni-

cal Report TR-114, Dept. of Computer Science, Univ. of Toronto, Dec. 1977.

5. L. M. Goldschlager, ‘*A universal interconnection pattern for parallel computers,”’

J. Assoc. Comput. Mach., vol. 29, no. 4, pp. 1073-1086, Oct. 1982.

6. I. Parberry, **A complexity theory of parallel computation,”” Ph. D. Thesis, Dept.

of Computer Science, Univ. of Warwick, May 1984.

7. |. Parberry, *‘Parallel speedup of sequential machines. a defense of the parallel

computation thesis,”” SGACT News, vol. 18, no. 1, pp. 54-67, 1986.

8.

10.

11.

12.

13.

14.

- 24 -

|. Parberry, Parallel Complexity Theory, Research Notes in Theoretica Computer

Science, Pitman Publishing, London, 1987.

|. Parberry and P. Y. Yan, ‘‘Improved upper and lower time bounds for parallel
random access machines without simultaneous writes,”” Proc. 1989 International
Conference on Parallel Processing, vol. 3, pp. 226-233, St. Charles, IL, Aug.

1989.

R. Reischuk, *‘A lower time-bound for parallel random-access machines without
simultaneous writes,”’ Research Report RJ3431, IBM Research, San Jose, Mar.

1982.

Y. Shiloach and U. Vishkin, ‘‘Finding the maximum, sorting and merging in a

parallel computation model,”” J. Algorithms, vol. 2, pp. 88-102, 1981.

H. Simon, ‘‘A tight Q(log log n)-bound on the time for parallel RAM’s to com-
pute nondegenerated Boolean functions,’’ Inf. Control, vol. 55, pp. 102-107,

1982.

M. Snir, **On parale searching,”” SAM J. Comput., vol. 14, no. 3, pp. 688-708,

Aug. 1985.

P.Y. Yan, ‘‘Lower bound techniques in some parallel models of computation,”’

Ph.D. Thesis, Dept. of Mathematics, Penn State University, 1989.

