
Circuit Complexity and

Feedforward Neural Networks

Ian Parberry∗

Department of Computer Sciences
University of North Texas

Abstract

Circuit complexity, a subfield of computational complexity theory, can be used to analyze how
the resource usage of neural networks scales with problem size. The computational complexity
of discrete feedforward neural networks is surveyed, with a comparison of classical circuits to
circuits constructed from gates that compute weighted majority functions.

1 Introduction

Computation consumes resources, including time, memory, hardware, and power. A theory of com-
putation, called computational complexity theory1 has grown from this simple observation, starting
with the seminal paper of Hartmanis and Stearns [14]. The prime tenet of this field is that some
computational problems intrinsically consume more resources than others. The resource usage of a
computation is measured as a function of the size of the problem being solved, that is, the number of
bits needed to encode the input. The idea is that as science and technology progresses the amount
of data that we must deal with will grow rapidly with time. We not only need to be able to solve
today’s technological problems, but also to be able to scale up to larger problems as our needs grow
and larger and faster computers become available. The goal of computational complexity theory
is to develop algorithms that are scalable in the sense that the rate of growth in their resource
requirements does not outstrip the ability of technology to supply them.

An important contribution of neural networks is their capacity for efficient computation. The
first computers were created in rough analogy with the brain, or more correctly, in rough analogy
with what was believed about the brain at the time by a certain group of people. Although
technology has advanced greatly in recent decades, modern computers are little different from their
older counterparts. It is felt by some scientists that in order to produce better computers we must
return to the brain for further inspiration.

It is important to determine which features of the brain are crucial to efficient computation,
and which features are merely by-products or side-effects. It is unlikely that a computer that is
comparable in computing power to the brain can be obtained by merely simulating its observed
behaviour, simply because the overhead is too great. The general principles of brain computation
must be understood before we try to implement an artificial system that exhibits them.

∗Author’s address: Department of Computer Sciences, University of North Texas, P.O. Box 13886, Denton, TX
76203-3886, U.S.A. Electronic mail: ian@ponder.csci.unt.edu.

1Computational complexity theory should not be the confused with the more recent science of complexity studied
by physicists.

1

Another important contribution of neural networks is their capacity for learning from experience.
While computational learning theory is outside the scope of this short survey, what we will learn
here will have some relevance to learning because neural network computation is a necessary part
of the foundations of neural network learning. Just as a child cannot learn to perform a task
unless he or she is physically capable of performing it, a neural network cannot learn to compute a
function unless it is physically capable of computing it. “Physically capable” in this context means
“possessing sufficient resources”.

Circuit complexity is a subfield of computational complexity theory that deals with efficient
computation by networks of simple processing units. In this paper we survey some results in circuit
complexity that cast some light on how neural networks scale. Our main theme is the following:
the computational power of neural networks is contingent on (but not limited to) the following
features which distinguish them from conventional von Neumann style computers:

• Parallelism: processing elements may compute in parallel.
• Large fan-in: the number of inputs to each gate is not limited to 2 (as is current technology),

but may scale with the size of the problem being solved.
• Node function: gates may compute weighted majority functions.

For more details on the subject matter of this paper, and the application of other branches of
computational complexity theory to neural networks, see Parberry [29, 30].

The remainder of this paper is divided into four sections. The first considers a simple feedfor-
ward neural network model. The second examines computation with a version of this model that
has node functions limited to Boolean conjunction, disjunction, and complement. The third con-
siders computation by such networks with the restriction that the number of nodes cannot increase
exponentially. The fourth extends the node function set to include weighted majority functions,
a popular discrete neural network model that is well-studied in the literature. The fifth sketches
some variations on the model.

In the remainder of this paper, IB denotes the Boolean set {0, 1}, IN denotes the natural numbers,
IR denotes the real numbers, and IR+ denotes the positive real numbers. If V is a finite set, ‖V ‖
denotes the number of members of V . If x ∈ IR+, �x� denotes the largest natural number not
exceeding x, and �x� denotes the smallest natural number not less than x. All logarithms are to
base two unless otherwise indicated.

If f, g : IN→ IN, f(n) is said to be O(g(n)) if there exists c, n0 ∈ IN such that for all n ≥ n0,
f(n) ≤ c · g(n). If f, g : IN→ IN, f(n) is said to be Ω(g(n)) if there exists c ∈ IN such that for
infinitely many values of n, f(n) ≥ c · g(n).

If S is a set, Sn denotes the n-fold Cartesian product of S,

S × S × · · · × S︸ ︷︷ ︸
n times

= {(s1, . . . , sn) | si ∈ S for 1 ≤ i ≤ n},

and S∗ denotes ∪n∈INSn.
A directed graph is an ordered pair G = (V,E), where V is a finite set of nodes and E ⊆ V ×V is

a set of edges. An edge (u, v) ∈ E is said to be directed from u to v. A cycle in a graph G = (V,E)
is a sequence of vertices v1, . . . , vn such that (vi, vi+1) ∈ E for 1 ≤ i < n, and (vn, v1) ∈ E. A
directed, acyclic graph is a directed graph that has no cycles.

This paper contains a preliminary version of material to appear in Parberry [30]. Many of the
proofs in this paper are truncated or omitted entirely to save space. The reader who wishes to read
a more detailed account may refer to [30]. The reader who is not interested in the proofs may skip
them entirely and still gain something from the remainder of the paper.

2

2 Feedforward Neural Networks

The general framework used by neural network researchers is a finite network of simple computa-
tional devices wired together so that they interact and cooperate to perform a computation (see,
for example, Rumelhart, Hinton, and McClelland [36]).

Suppose F is a set of functions f : IB∗→ IB. A feedforward neural network with node function
set F is a 5-tuple C = (V,X, Y,E, �), where

V is a finite ordered set of gates
X is a finite ordered set of inputs, X ∩ V = ∅
Y ⊆ V ∪ X is a set of outputs
(V ∪ X,E) is a directed, acyclic graph called the the interconnection graph of C.
� :V →F determines the function computed by each gate.

A gate g ∈ V will be referred to as an �(g)-gate. The set of node functions F is typically one of
the following:

1. Binary conjunction, binary disjunction, and unary negation.

The binary conjunction function is the function AND:IB2→ IB defined by

AND(x1, x2) = x1 ∧ x2,

that is, the function that is 1 iff both of its inputs are 1.

The binary disjunction function is the function OR:IB2→ IB defined by

OR(x1, x2) = x1 ∨ x2,

that is, the function that is 1 iff at least one of its inputs is 1.

The unary negation function is the function NOT:IB→ IB defined by

NOT(x1, x2) = ¬x1,

that is, the function that is 1 iff its input is 0.

Circuits with this node function set will be called classical circuits.

2. Conjunction and disjunction of an arbitrary number of inputs, and unary negation.

The conjunction function is the function AND:IBn→ IB defined by

AND(x1, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn,

that is, the function that is 1 iff all of its inputs are 1.

The disjunction function is the function OR:IB2→ IB defined by

OR(x1, x2) = x1 ∨ x2 ∨ · · · ∨ xn,

that is, the function that is 1 iff at least one of its inputs is 1.

Circuits with this node function set will be called AND-OR circuits.

3

3. Majority of an arbitrary number of inputs, and unary negation.

The majority function is the function MAJORITY:IBn→ IB defined by

MAJORITY(x1, . . . , xn) =

{
1 if

∑n
i=1 xi ≥ n/2

0 otherwise

that is, the function that is 1 iff at least half of its inputs are 1.

Circuits with this node function set will be called threshold circuits.

4. Weighted majority of an arbitrary number of inputs.

The weighted majority function2 is the function WMAJORITY:IBn→ IB defined by

WMAJORITY(x1, . . . , xn) =

{
1 if

∑n
i=1 wixi ≥ h

0 otherwise

for some w1, . . . , wn, h ∈ IR.

Circuits with this node function set will be called weighted threshold circuits.

Note that each of these node function sets includes the previous set.
Let C = (V,X, Y,E, �) be a feedforward neural network, where X = {x1, . . . , xn} and Y =

{y1, . . . , ym}. For each b1, . . . , bn ∈ IB, define the value of gate g of circuit C on input b1, . . . , bn,
denoted vC(b1, . . . , bn)(g), as follows. If g = xi for some 1 ≤ i ≤ n, define vC(b1, . . . , bn)(g) = bi.
If g ∈ V , and P = {g1, . . . , gm} = {g′ | (g′, g) ∈ E}, then vC(b1, . . . , bn)(g) = �(g)(g1, . . . , gm). The
output of C on inputs b1, . . . , bn ∈ IB is defined to be vC(b1, . . . , bn)(y1), . . . , vC(b1, . . . , bn)(ym).
An n-input feedforward neural network C = (V,X, Y,E, �) is said to compute a Boolean function
f : IBn→ IBm if for all b1, . . . , bn ∈ IB, the output of C on input b1, . . . , bn is f(b1, . . . , bn).

For example, Figure 1 shows a classical circuit C = (V,X, Y,E, �), where

V = {g1, g2, g3, g4, g5, g6, g7, g8, g9}
X = {x1, x2, x3, x4}
Y = {g9}
E = {(x1, g1), (x2, g1), (x2, g2), (x3, g2), (x3, g3), (x4, g4),

(g1, g4), (g2, g6), (g2, g5), (g3, g7), (g4, g6), (g5, g7), (g6, g8), (g7, g8), (g8, g9)}

�(g1) = AND �(g4) = NOT �(g7) = OR
�(g2) = AND �(g5) = NOT �(g8) = AND
�(g3) = OR �(g6) = OR �(g9) = NOT

C computes the function

¬((¬(x1 ∧ x2) ∨ (x2 ∧ x3)) ∧ (¬(x2 ∧ x3) ∨ (x3 ∨ x4))).

The size of a feedforward neural network C = (V,X, Y,E, �) is defined to be ‖V ‖, the number
of gates. The depth is defined to be the maximum number of gates in V on any path from an input
to an output. The gates in a circuit of depth d can be partitioned in d levels or layers. The inputs
X are said to be at level 0. A gate v ∈ V is said to be at level i > 0 if

2Weighted majority functions are often called the linear threshold functions.

4

g5

x xx x

And And

And

Or

Or

Or

Not

Not

g g g

g

g g

g

g

1

1 2

2

3

3 4

4

6 7

8

9

Not

Figure 1: A classical circuit.

1. for all u ∈ V ∪ X such that (u, v) ∈ E, u is at a level less than i, and

2. there exists u ∈ V ∪ X at level i − 1 such that (u, v) ∈ E.

There is little attention paid in the literature to how these finite feedforward neural networks
scale to larger problems. When one designs a circuit to solve a given task, such as performing
pattern recognition on an array of pixels, one typically starts with a small number of inputs and
eventually hopes to scale up the solution to real life situations. How the resources of the circuit
scale as the number of inputs increases is of prime importance. A good abstraction of this process
is to imagine a potentially infinite series of circuits, C = (C1, C2, . . .), where for n ∈ IN, Cn has n
inputs, and to measure the increase in resources from one circuit in the series to the next. The size
of a circuit family C = (C1, C2, . . .) is said to be Z(n) if for all n ∈ IN, the size of Cn is at most
Z(n). The depth of C is said to be D(n) if for all n ∈ IN, the depth of Cn is at most D(n).

There is an apparent flaw in our abstraction. Since for every natural number n, every Boolean
function with n inputs can be computed by a finite classical circuit, our infinite-family-of-finite-
circuits model can compute any Boolean function:

Theorem 2.1 Every Boolean function f : IB∗→ IB can be computed by a classical circuit family.

Proof: It is sufficient to show that for all n ∈ IN and every Boolean function f : IBn→ IB, there
is a classical circuit that computes f . The proof is by induction on n. The Theorem is certainly
true for n = 1 (in which case there are only four functions to consider, the always true function,
the always false function, the identity function, and the complement function, each of which can
be realized with at most one gate).

5

x
1 xnn-1x. . .

f
0

f
1

Not

Or

AndAnd

Figure 2: Circuit for computing f in the proof of Theorem 2.1.

Suppose that every function on n − 1 inputs can be computed by a classical circuit. Define
f0, f1 : IBn−1→ IB as follows:

f0(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0)
f1(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1)

Then

f(x1, . . . , xn) = (f0(x1, . . . , xn−1) ∧ (xn = 0)) ∨ (f1(x1, . . . , xn−1) ∧ (xn = 1))
= (f0(x1, . . . , xn−1) ∧ ¬xn) ∨ (f1(x1, . . . , xn−1) ∧ xn).

Since f0 and f1 can be computed by a classical circuit (by the induction hypothesis), f can be
computed by the classical circuit shown in Figure 2. �

By Theorem 2.1, our feedforward neural network model can compute the halting problem (given
the Gödel number of a Turing machine and an input, determine whether the Turing machine halts
on that input). Hence, our model can compute more functions than a Turing machine. But the
Church-Turing thesis states that all reasonable computational models compute the same class of
functions. What is so unreasonable about our model? It is the fact that the interconnection
pattern (V,E) and the gate assignment function � can be noncomputable functions. Let us call
the interconnection pattern and gate assignment functions collectively the architecture of a neural
network. In practice we will probably use computers to manufacture neural networks, and thus

6

is would be reasonable to insist that the architectures be computable. That is, we could insist
that the architecture of each finite circuit in the infinite series be similar to its predecessor in the
series in the sense that a Church-Turing style computer can compute the differences between the
two. This type of circuit is called a uniform circuit (whereas the unrestricted model is called a
nonuniform circuit).

However, from a theoretical point of view, a circuit family with a noncomputable interconnection
pattern might still be interesting. Knowing that a circuit families for a given function exists may
be important information, even though there may be no algorithm for constructing it. However,
Theorem 2.1 is of no practical use since the circuits it constructs have exponential size, and therefore
can only be used for very small values of n. Can we hope to reduce the size bound in Theorem 2.1
from an exponential to a polynomial? The answer is no. This is due to the fact that some Boolean
functions require exponential size (see Theorem 3.5). It is more interesting to ask instead which
Boolean functions can be computed with nonuniform circuits of only polynomial size. Sometimes
it may be useful to know that polynomial size circuits exist even if it is not known how to construct
them.

3 Alternating Circuits

The philosophy behind classical circuit families is the following. It assumes that as technology
improves, we will be able to construct circuits of increasingly larger size. At the same time, it
assumes that gate technology will remain fixed, and in particular, that the number of inputs to
each gate (called the fan-in) will not increase as time passes. However, in the human brain the
fan-in is extremely large compared to the number of neurons (approximately 1010 neurons and
fan-in of up to 105). It may be that the incredible computing power of the brain comes from this
high fan-in. If we are to eventually reach fan-ins this large, we will probably do it by scaling the
fan-in as well as the size. The AND-OR circuit models a scenario in which technological advances
allow the construction of larger circuits as time passes, and that the technology is developed in
such a way that fan-in keeps pace with size. AND-OR circuits are very similar to classical circuits,
but the fan-in may grow with input size instead of being limited to 2. In each finite circuit it is
clearly bounded above by the number of gates, but it may increase from one circuit in the family
to the next.

In this model it is not strictly necessary to have the NOT-gates scattered arbitrarily throughout
the circuit if a constant factor increase in size is permitted:

Theorem 3.1 For every n-input AND-OR circuit of depth d and size s there exists an equivalent
n-input AND-OR circuit of depth at most d and size at most 2s + n in which all of the NOT-gates
are at level 1.

Theorem 3.1 allows us to put all AND-OR circuits into a useful kind of normal form. An
alternating circuit is an AND-OR circuit in which all of the gates in any given layer compute the
same function, and the layers (apart from the first) alternate between gates computing AND and
gates computing OR as we go down the circuit (that is, the even numbered layers compute AND
and the odd numbered layers compute OR, or vice-versa):

Corollary 3.2 For every n-input AND-OR circuit of size s and depth d there is an equivalent
alternating circuit of size at most 2s + n and depth at most d.

7

We will use alternating circuits in preference to AND-OR circuits from this point onwards.
Let us redefine the depth and size of an alternating circuit to exclude layer 1 (which consists of
NOT-gates). It is convenient to think of an alternating circuit as being a function of a set of
literals, where a literal is either an input or its complement. Our motivation is based primarily on
the desire for a cleaner model, but we are not totally divorced from reality, since NOT-gates are
relatively cheap compared to AND and OR-gates (particularly since we have placed no bound on
the fan-in of the latter). Omitting the NOT-gates can only have a relatively small effect on the size
of alternating circuits, since they can have most n NOT-gates.

One can prove that any function with output dependent on all inputs requires a classical circuit
of depth at least log2 n. In contrast, alternating circuits can compute any function in constant
depth.

Theorem 3.3 For all f : IBn→ IB, there is an alternating circuit of size 2n−1 + 1 and depth 2 that
computes f .

Proof: (Outline) Express f in either disjunctive normal form (a disjunction of conjunctions of
literals) or CNF (a conjunction of disjunctions of literals). It can be shown that if the former has
c conjunctions and the latter has d disjunctions, then c + d ≤ 2n. Therefore, one of c, d is at most
2n−1, and therefore the circuit constructed from the appropriate formula has size 2n−1 + 1 and
depth 2. �

Theorem 3.3 compares favourably with Theorem 2.1, which gives classical circuits of size O(2n)
and depth O(n). Unfortunately, the circuits constructed in both Theorems have exponential size
(that is, size that grows exponentially with n), and hence cannot be considered a practical method
for constructing circuits for all but the smallest values of n. It is interesting to ask whether
exponential size is necessary. It is certainly necessary if we wish to maintain depth 2. In fact,
Theorem 3.3 has optimal size for circuits of depth 2. Consider the following problem.

PARITY
Instance: x1, . . . , xn ∈ IB.
Question: Is ‖{i | xi = 1}‖ odd?

Theorem 3.4 Any depth 2 alternating circuit for computing PARITY must have size at least
2n−1 + 1.

Theorem 3.4 is due to Lupanov [18, 19]. An obvious question to ask is whether we can reduce
the size and trade it for increased depth. The answer is that this is not possible beyond a certain
size: some functions intrinsically require exponential size circuits.

Theorem 3.5 There exists a function that requires an alternating circuit of size Ω(2n/2).

Proof: (Outline) Count the number of circuits of a given size, and the the number of Boolean
functions. The former must be no smaller than the latter. �

Can this size lower bound, which is smaller by a polynomial amount (actually, a square-root)
than the upper bound of Theorem 3.3, be met? Surprisingly it can be met with a circuit of depth
3, a result that can be traced to Redkin [35].

8

Theorem 3.6 If f : IBn→ IB, then there is an alternating circuit of size O(2n/2) and depth 3 that
computes f .

Proof: Let f : IBn→ IB. Without loss of generality, assume n is even (a similar approach will work
when n is odd). We will construct a circuit for f using a standard divide-and-conquer technique.

For each x1, . . . , xn/2 ∈ IB, define g(x1, . . . , xn/2) : IBn/2→ IB by

g(x1, . . . , xn/2)(xn/2+1, . . . , xn) = f(x1, . . . , xn).

Each of the 2n/2 functions g(x1, . . . , xn/2) for x1, . . . , xn/2 ∈ IB can be computed by a single multi-
output circuit of depth 2 and size 2n/2+1 with the first layer consisting of OR gates, and the second
layer consisting of AND gates, using the technique of Theorem 3.3. Note that the resulting circuits
each have size 2n/2 + 1 giving a combined size of 2n + 2n/2. However, there are only 2n/2 different
OR functions of n/2 inputs. Therefore, the first layers of these circuits can be combined into a
single layer that has at most 2n/2 OR gates. The resulting circuit C computes the 2n/2 functions
in size 2n/2+1 by using 2n/2 OR gates in the first layer and 2n/2 AND gates in the second layer.

For each b1, . . . , bn/2 ∈ IB, define h(b1, . . . , bn/2) : IBn→ IB by

h(b1, . . . , bn/2)(x1, . . . , xn) = (xi = bi for 1 ≤ i ≤ n/2) ∧
g(x1, . . . , xn/2)(xn/2+1, . . . , xn).

The circuit C constructed above can easily be modified to compute the 2n/2 functions h(b1, . . . , bn/2)
for b1, . . . , bn/2 ∈ IB by simply taking the AND gate that computes

g(b1, . . . , bn/2)(xn/2, . . . , xn),

and giving it extra inputs from x1[b1], . . . , xn/2[bn/2] (where xi[0] denotes xi, xi[1] denotes xi, xi[0]
denotes xi, and xi[1] denotes xi). The resulting circuit still has depth 2 and size 2n/2+1.

Finally, we note that

f(x1, . . . , xn) = h(0, . . . , 0︸ ︷︷ ︸
n/2

)(x1, . . . , xn) ∨ · · · ∨ h(1, . . . , 1︸ ︷︷ ︸
n/2

)(x1, . . . , xn),

and f can therefore be computed by a circuit of depth 3 and size 2n/2+1 + 1. �

For example, Figures 3 and 4 show the construction of a depth 3 circuit for a function f with
4 inputs and the input-output behaviour shown in Table 1. Figure 3 shows the two steps in the
construction of the circuit for computing the functions g(0, 0), g(0, 1), g(1, 0), g(1, 1). Figure 4
shows the resulting circuit for f .

4 Polynomial Size Alternating Circuits

The problem with the methods for circuit design presented in the previous section is that they
produce circuits whose size grows exponentially with n. Unfortunately, as we saw in Theorem 3.5,
not all functions have polynomial size circuits. It is interesting to consider those that do.

Let P denote the set of decision problems which can be solved by an alternating circuit of
polynomial size, that is, a circuit C = (C1, C2, . . .), where for some c ∈ IN and all n ≥ 1, the size of

9

x1 x2 x3 x4 f(x1, x2, x3, x4) x1 x2 x3 x4 f(x1, x2, x3, x4)
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 1 0
0 0 1 0 0 1 0 1 0 0
0 0 1 1 0 1 0 1 1 1
0 1 0 0 0 1 1 0 0 1
0 1 0 1 1 1 1 0 1 1
0 1 1 0 0 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0

Table 1: Truth table for a 4-input Boolean function f .

x xx x3 43 4

And And And And

x xx x3 43 4

And And And And

Or Or Or Or

Or Or Or Or

g(0,0) g(0,1) g(1,0) g(1,1) g(0,0) g(0,1) g(1,0) g(1,1)

Figure 3: Construction of alternating circuit using Theorem 3.6 for the function f defined in Table 1.
Left: Circuit for complement of g(0, 0), g(0, 1), g(1, 0), g(1, 1). Right: Circuit for g(0, 0), g(0, 1),
g(1, 0), g(1, 1).

10

x1 x2x1 x2 x xx x3 43 4

OrOr OrOr

AndAndAndAnd

h(0,0) h(0,1) h(1,0) h(1,1)

Or

Figure 4: Construction of alternating circuit using Theorem 3.6 for the function f defined in Table 1.
The top two layers of the circuit compute h(0, 0), h(0, 1), h(1, 0), h(1, 1), and should be compared
with Figure 3. The third layer computes f .

11

P

AC

Figure 5: The classes AC and P (conjectured).

Cn is bounded above by nc. It is easy to show that PARITY is a member of P(see, for example,
Theorem thm.parity.nc). We will call the problems in P tractable and those not in P intractable.

To enhance readability, we will describe decision problems not as being functions of a sequence
of bits, but as functions of mathematical objects, wherever appropriate. This is reasonable, since
all finite mathematical objects can be encoded as a sequence of bits. For example, an integer can
be encoded in binary, a sequence of integers can be encoded by repeating each bit in the numbers
(replacing 0 with 00, and 1 with 11 wherever it occurs) and separating each pair of integers by 01,
and a set can be represented as a sequence of members. This approach is useful in that it adds a
level of abstraction that insulates the reader from messy details at the bit level. However, there
is a pitfall to be avoided here. If the encoding scheme is suitably sparse, then every function that
is computable by an alternating circuit can be made a member of P . For example, if a function
f : IN→ IB is computable in size 2n when the input is encoded in binary, then simply encode it
in unary. The number of gates will then be linear in the number of inputs since the number
of inputs has been exponentially bloated. However, such trickery will not enable us to compute
useful functions with a modest amount of hardware. It is reasonable to insist that inputs encode a
sufficiently large amount of information about the mathematical objects in question. We will insist
that the input encoding is sufficiently dense, that is, it is not more than polynomially larger than
the tersest description of the input.

Whilst all problems in P have polynomial depth circuits (if the depth were greater than a
polynomial, then so would the size be), it is interesting to consider which of them have depth
exponentially smaller than size, that is, growing polynomially with log n. Depth is of particular
interest since it corresponds to the notion of time, assuming that gates are allowed to compute in
parallel. We will use the notation logc n to denote the function (log n)c, and use the term polylog
to denote a function of the form logc n for some c ∈ IR.

Let AC denote the set of decision problems which can be solved by an alternating circuit of
polynomial size and polylog depth. The polynomial size condition ensures that AC ⊆ P , but it
is unknown whether this containment is proper. It is widely conjectured that P �= AC. Figure 5
shows the conjectured relationship between AC and P .

Although it is not known for sure whether there is a problem in P that is not in AC, there is a
good candidate, in the sense that if any problems are in of P but not NC, this is one of them:

CIRCUIT VALUE (CVP)
Instance: An n-input alternating circuit C, and x1, . . . , xn ∈ IB.

12

x1 xx1 xn n. . .

B

y

Polynomial size, polylog depth

Polynomial size, polylog depth
Circuit for

A to Bcircuit reducing

Figure 6: The polynomial size, polylog depth circuit for A, given A ≤l B and B ∈ AC.

Question: What is the output of C on input x1, . . . , xn?

We say that a problem A is AC-reducible to problem B, written A ≤l B, if there exists a
function f computable by an alternating circuit of polynomial size and polylog depth such that for
every x, x ∈ A iff f(x) ∈ B.

Lemma 4.1 If A ≤l B, and B ∈ AC, then A ∈ AC.

Proof: Suppose B ∈ AC, that is, there is a circuit for B of size nb and depth logb′ n, for some
b, b′ ∈ IN. Further suppose there is a circuit C of size nc and depth logc′ n, for some c, c′ ∈ IN, which
reduces A to B. A circuit for A can be obtained by combining the polynomial size, polylog depth
circuit for B and the polynomial size, polylog depth circuit C which reduces A to B, as shown in
Figure 6. Since C has size nc, C has at most nc outputs. Therefore the circuit for B has size nbc

and depth c logb′ n, and so the entire circuit has polynomial size and polylog depth. �

We will say that a problem is P-hard if every problem in P is AC-reducible to it, and that it is
P-complete if it is P-hard and a member of P .

Theorem 4.2 CVP is P-complete.

Proof: It can be shown that CVP ∈ P . It remains to show that CVP is P-hard, that is, for
all A ∈ P, A ≤l CVP. Suppose A ∈ P . Then there is a polynomial size circuit which recognizes
A. It is easy to construct a circuit of polynomial size and constant depth (it consists purely of
constant-gates which output either 0 or 1 regardless of their input) which inputs x1, . . . , xn and
outputs a description of A with a copy of the input x1, . . . , xn. The output is an instance of CVP
which is a member of CVP iff x ∈ A. Therefore, A ≤l CVP. �

The uniform version of Theorem 4.2 is due to Ladner [17]. The proof in that reference is
somewhat sketchy; a more detailed proof appears in Parberry [28]. P-complete problems are

13

P

P-complete Problems

CVP

PARITY
AC

Figure 7: P-complete problems (conjectured).

interesting since, by Lemma 4.1, if one of them is in AC, then AC = P . If the conjecture that
AC �= P is correct, then by Theorem 4.2, the circuit value problem requires polynomial depth if it
is to be solved by polynomial size circuits, and Figure 7 reflects the true state of affairs.

Define ACk to be the set of problems that can be solved in polynomial size, and depth O(logk n),
for k ≥ 0. Clearly ACk ⊆ ACk+1 for k ≥ 0, and

AC = ∪k≥0ACk.

The classes ACk for k ≥ 1 first appeared in Cook [8].
The relationship between classical circuits and AND-OR circuits is obvious.

Theorem 4.3 For every finite alternating circuit of size s and depth d there is a finite classical
circuit of size s(s + n) and depth d�log(s + n)�.

Proof: Let C be a finite alternating circuit of size s, depth d, and fan-in f . The new circuit C ′

is constructed by replacing every AND-gate in C with a tree of fan-in 2 AND gates of size f and
depth �log f� in the obvious fashion, and similarly for OR-gates. Figure 8 shows the construction
for f = 8. Since f ≤ s + n, the result follows. �

There are bounded fan-in analogs of the complexity classes studied so far in this section. Define
NCk to be the set of problems that can be solved by classical circuits in polynomial size and depth
O(logk n), for k ≥ 1. Clearly NCk ⊆ NCk+1 for k ≥ 1. Define

NC = ∪k≥0NCk.

NC is an abbreviation of “Nick’s Class”, named by Cook [9] after Pippenger, who discovered an
important relationship between NC and conventional Turing machine based computation [33].

Corollary 4.4 1. For k ≥ 0, NCk ⊆ ACk.

2. For k ≥ 0, ACk ⊆ NCk+1.

3. NC = AC.

14

AND

AND AND

AND

AND AND

AND

AND

Figure 8: Replacing a fan-in 8 AND-gate with a tree of fan-in 2 gates.

Proof: Part (1) is obvious, since fan-in 2 circuits are a special case of unbounded fan-in circuits.
Part (2) is a corollary of Theorem 4.3. Part (3) follows immediately from part (2). �

Figure 11 shows the relationships between NCk and ACk.

Theorem 4.5 PARITY ∈ NC1:

Proof: A depth 2, size 6 alternating circuit computing the parity of two inputs is shown in
Figure 9. It can be used as a sub-circuit to compute the n-input parity function x1 ⊕ · · · ⊕ xn in
depth 2�log n� and size 6(n − 1) using the binary tree construction illustrated in Figure 10. �

It is interesting to note that the unbounded fan-in of the AC circuits allows a significant reduc-
tion in depth without reducing size.

Theorem 4.6 Any function computed by a classical circuit of depth d and size z can be computed
by an alternating circuit of depth �d/δ� and size O(z22δ

), for any δ ∈ IN.

Proof: Divide the classical circuit into horizontal strips of depth δ. Each gate on the bottom of
a strip can depend on at most 2δ−1 gates at the top of the strip, and thus its role can be played by
an alternating circuit of size O(22δ

) and constant depth (by Theorem 3.3). �

Corollary 4.7 Any function that can be computed by a classical circuit of depth D(n) and size
S(n) can be computed by an alternating circuit of depth O(D(n)/ log log S(n)) and size less than
S(n)1+ε for any ε ∈ IR+.

Proof: The claimed result follows immediately from Theorem 4.6 by taking

δ = �0.5 log log S(n)�.

The resulting circuit has size S(n)2
√

log S(n), which for any ε ∈ IR+ and large enough n is less than
S(n)1+ε. �

A weaker form of Corollary 4.7 is due to Chandra, Stockmeyer, and Vishkin [7]. Our result
is the obvious generalization, and tightens the sloppy analysis of Theorem 5.2.8 of Parberry [29].

15

And And And And

Or Or

x1

y

x2x1 x2

y

g g g g

g g

1 2 3 4

5 6

Figure 9: An alternating circuit computing y = x1 ⊕ x2 and its complement.

x1 x2x1 x2 x xx x x xx x

Parity

3 3 4 4 n-1 nn-1 n

Parity

Parity

x x

Parity

x xn-2 n-2n-3 n-3

y

Parity Parity

Parity

Figure 10: An alternating circuit computing y = x1 ⊕ · · · ⊕ xn. Each box is a copy of the circuit in
Figure 9.

16

NC 1AC 0 AC 1 NC 2 . . .

AC = NC

Figure 11: The classes NCk and ACk.

Corollary 4.7 is particularly interesting when S(n) is a polynomial in n, in which case it states that
the depth of a classical circuit can be reduced by a factor of log log n in return for a very small
increase in size.

AC0, the set of problems that can be solved in polynomial size and constant depth, is of
particular interest. The class AC0 was first studied by Furst, Saxe, and Sipser [11], and was named
by Barrington [4]. We saw in Theorem 3.3 that every Boolean function can be computed in constant
depth with exponential size, but this cannot be considered practical for any but the very smallest
values of n. Unfortunately, as we saw in Theorem 3.5, some Boolean functions intrinsically require
exponential size (regardless of depth). However, some interesting functions can be computed in
constant depth with only polynomial size. For example, the sum of two n-bit natural numbers
can be computed by an alternating circuit of size O(n2) and depth 4 using the standard carry-
lookahead algorithm (see, for example, Wegener [40]). Chandra, Fortune and Lipton have shown
by a sophisticated argument that the size bound can be reduced from O(n2) to an almost linear
function. Define f (1)(x) = f(x), and for i > 1, f (i)(x) = f(f (i−1)(x)). Define f1(n) = 2n, and for
i > 1, fi(n) = f

(n)
i−1(2). Chandra, Fortune and Lipton [6] have shown that there is an alternating

circuit for computing the carry of two n-bit numbers in depth 6d+3 and size nf−1
d (n)2. Surprisingly,

they also found a matching lower bound [5]. However, there are languages in NC1 that are not in
AC0:

Theorem 4.8 Every constant depth AND-OR circuit for PARITY requires exponential size.

Proof: This result was originally proved by Furst, Saxe, and Sipser [11] and Ajtai [2], and
improved lower bounds on the size required for constant depth alternating circuit for PARITY
were successively obtained by Yao [41] and Hastad [38]. �

More strongly, for every k ∈ IN there are functions that can be computed by alternating circuits
in polynomial size and depth k, but require exponential size alternating circuits of depth k − 1
(Sipser [37]). This is often called the depth hierarchy theorem for AC0.

17

5 Threshold Circuits

The node function set for a weighted threshold circuit is the set of weighted majority functions
f : IBn→ IB. These are functions of the form:

f(x1, . . . , xn) =

{
1 if

∑n
i=1 wixi ≥ h

0 otherwise

for some w1, . . . , wn, h ∈ IR. The values w1, . . . , wn that define f are called weights, and the value
h is called the threshold. The sequence (w1, . . . , wn, h) is called a presentation of f . The weight of
a presentation is the maximum of the magnitude of its weights. Define

σn(w1, . . . , wn)(x1, . . . , xn) =
n∑

i=1

wixi,

and further define θn(w1, . . . , wn, h) to be the weighted majority function with presentation (w1, . . . , wn, h),
that is,

θn(w1, . . . , wn, h)(x1, . . . , xn) = 1 iff σn(w1, . . . , wn)(x1, . . . , xn) ≥ h.

It is clear that every weighted majority function has an infinite number of presentations. It is
not too difficult to show that every weighted majority function has an infinite number of integer
presentations, that is, presentations whose weights and thresholds are integers (Minsky and Pa-
pert [21]). Furthermore, every n-input weighted majority function has an integer presentation of
weight bounded above by a function of n.

Theorem 5.1 Every weighted majority function has an integer presentation of weight at most

(n + 1)(n+1)/2/2n.

Proof: Suppose f is a weighted majority function. Assume without loss of generality that f is
nondegenerate, that is, it depends on all of its inputs. Consider the following inequalities in un-
knowns w1, . . . , wn, h, one for each s = (s1, . . . , sn) ∈ IBn. If f(s) = 0, the inequality corresponding
to s is

σn(w1, . . . , wn)(s1, . . . , sn) ≤ h − 1. (1)

If f(s) = 1, the inequality corresponding to s is

σn(w1, . . . , wn)(s1, . . . , sn) ≥ h. (2)

The inequalities of the form (1) and (2) define a convex polytope in IRn+1 whose interior
and surface points are presentations of f . Since f has at least one presentation, this polytope is
nontrivial.

Since f is nondegenerate, there is a point on the hypersurface of the polytope which meets
exactly n + 1 hyperfaces. This point satisfies n + 1 of the inequalities (1), (2) in exact equality.
Therefore there are n + 1 equations in w1, . . . , wn, h,

s1,1w1 + s1,2w2 + · · · + s1,nwn − h = a1

s2,1w1 + s2,2w2 + · · · + s2,nwn − h = a2
...

sn+1,1w1 + sn+1,2w2 + · · · + sn+1,nwn − h = an+1,

18

where si,j ∈ {0, 1} and ai ∈ {0,−1} for 1 ≤ i ≤ n + 1, whose solution is a presentation of f .
By Cramer’s rule, the solution to these simultaneous equations is given by wi = ∆i/∆ for

1 ≤ i ≤ n, and h = ∆n+1/∆, where

∆ =

∣∣∣∣∣∣∣∣∣∣

s1,1 s1,2 · · · s1,n −1
s2,1 s2,2 · · · s2,n −1

...
sn+1,1 sn+1,2 · · · sn+1,n −1

∣∣∣∣∣∣∣∣∣∣
,

and

∆i =

∣∣∣∣∣∣∣∣∣∣

s1,1 s1,2 · · · s1,i−1 a1 s1,i+1 · · · s1,n −1
s2,1 s2,2 · · · s2,i−1 a2 s2,i+1 · · · s2,n −1

...
sn+1,1 sn+1,2 · · · sn+1,i−1 an+1 sn+1,i+1 · · · sn+1,n −1

∣∣∣∣∣∣∣∣∣∣
for 1 ≤ i ≤ n, where sj,k ∈ {0, 1}, aj ∈ {0,−1}, for 1 ≤ j ≤ n + 1, 1 ≤ k ≤ n.

Clearly, by construction (w1, . . . , wn, h) is a presentation of f . Therefore (since multiplying all
weights and thresholds by the same value gives another valid presentation), (∆1, . . . ,∆n, g) is a
presentation of f . Furthermore, since an integer determinant is always an integer, it is an integer
presentation of f . It remains to show that |∆i| ≤ (n + 1)(n+1)/2/2n.

Negating column i of ∆i, multiplying each of the first n columns by 2 and adding column n+ 1
to each of them, we find that

2n|vi| =

∣∣∣∣∣∣∣∣∣∣

t1,1 t1,2 · · · t1,i−1 b1 t1,i+1 · · · t1,n −1
t2,1 t2,2 · · · t2,i−1 b2 t2,i+1 · · · t2,n −1

...
tn+1,1 tn+1,2 · · · tn+1,i−1 bn+1 tn+1,i+1 · · · tn+1,n −1

∣∣∣∣∣∣∣∣∣∣
for 1 ≤ i ≤ n, where tj,k = 2sj,k − 1 ∈ {−1, 1}, bj = −2aj − 1 ∈ {−1, 1}, for 1 ≤ j ≤ n + 1,
1 ≤ k ≤ n.

By the Hadamard inequality, the determinant of an (n + 1) × (n + 1) matrix over {−1, 1} is
bounded above in magnitude by (n + 1)(n+1)/2. Thus we deduce that |∆i| ≤ (n + 1)(n+1)/2/2n. �

Theorem 5.1 is due to Muroga, Toda, and Takasu [23], and appears in more detail in Muroga [22].
Weaker versions of this result were more recently rediscovered by Hong [15], Raghavan [34], and
Natarajan [25].

It is unknown whether the upper bound of Theorem 5.1 is tight. For obtaining lower bounds,
it is useful to count the number of n-input weighted threshold functions.

Theorem 5.2 There are at least 2n(n−1)/2 weighted threshold functions with n inputs.

Proof: Let C(n) be the number of n-input weighted threshold functions with zero threshold.
Then C(1) = 2, and we claim that for n > 1,

C(n) ≥ (2n−1 + 1)C(n − 1).

Let f = θn(w1, . . . , wn, 0) be a weighted threshold function. We will count the number of ways
that the weights w1, . . . , wn can be chosen to give different functions f . Partition the domain IBn

of f into two sets
IBn

0 = {(x1, . . . , xn−1, 0) | xi ∈ IB for 1 ≤ i < n}

19

and
IBn

1 = {(x1, . . . , xn−1, 1) | xi ∈ IB for 1 ≤ i < n}

The weights w1, . . . , wn−1 can be chosen in C(n − 1) different ways, each of which makes f have
a different output for some x ∈ IBn

0 , since there are exactly as many choices for f restricted to
domain IBn

0 as there are (n − 1)-input weighted threshold functions with zero threshold. This
choice of the first n − 1 weights fixes the relative order of σn(w1, . . . , wn)(x) for all x ∈ IBn

1 (which
values we can easily make distinct), regardless of the choice of wn. Then wn can be chosen to
make σn(w1, . . . , wn)(x) < 0 for exactly the first i of the x ∈ IBn

1 in this order, for 0 ≤ i ≤ 2n−1.
Therefore C(n) ≥ (2n−1 + 1)C(n − 1), as claimed.

Therefore, by induction on n,

C(n) ≥
n−1∏
i=0

(2i + 1) > 2n(n−1)/2.

�

This result is attributed to Dahlin by Muroga [22]. The lower-bound can be improved to C(n) >
2n(n−1)/2 +16 by observing that C(8) > 244 (Muroga, Tsuboi, and Baugh [24]).

Define the weight of a weighted threshold function f to be the smallest w ∈ IN such that f has
an integer presentation with all weights no greater than w in absolute value. We can deduce from
Theorem 5.2 that there are n-input weighted threshold functions with weight at least 2(n−1)/2, since
if all weighted threshold functions have weights strictly less than this value, then there would be
less than 2n(n−1)/2 weighted threshold functions. A similar lower bound can be found in Hampson
and Volper [13]. This nonconstructive counting argument is a little unsatisfactory, since it does
not give any specific weighted threshold functions with weights this large. Fortunately, a specific
example is known:

Theorem 5.3 If n is odd, wi = 2�(i−1)/2� for 1 ≤ i ≤ n, and h = 2(n−1)/2, the weighted threshold
function θn(w1, . . . , wn, h) has weight 2(n−1)/2.

Proof: Suppose n is odd. Let k = (n − 1)/2. It is easier to permute the inputs and consider
instead the weighted threshold function

f = θn(1, 2, 4, . . . , 2k−1, 2k, 2k−1, . . . , 4, 2, 1, 2k).

We are required to prove that there is no integer presentation of f with weights smaller in magnitude
than 2k. Suppose (w1, . . . , wn, h) is an arbitrary presentation of f . We will without loss of generality
assume that all of the weights are non-negative. It is sufficient to prove that wk+1 ≥ 2k.

For 1 ≤ i ≤ k, define ui, vi ∈ IBn as follows:

ui = (
k+1︷ ︸︸ ︷

0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0,

k︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

i−1

)

vi = (
k+1︷ ︸︸ ︷

1, . . . , 1︸ ︷︷ ︸
i

, 0, 0, . . . , 0,
k︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
i−1

).

20

Then

σn(1, 2, 4, . . . , 2k−1, 2k, 2k−1, . . . , 4, 2, 1, 2k)(ui) = 2i + (2k − 1 −
i−1∑
j=0

2j)

= 2k,

and

σn(1, 2, 4, . . . , 2k−1, 2k, 2k−1, . . . , 4, 2, 1, 2k)(vi) =
i−1∑
j=0

2j + (2k − 1 −
i−1∑
j=0

2j)

= 2k − 1,

so f(ui) = 1 and f(vi) = 0 for 1 ≤ i ≤ k. Therefore σn(w1, . . . , wn)(ui) ≥ h, that is,

wi+1 +
2k+2−i∑
j=k+1

wj ≥ h, (3)

and σn(w1, . . . , wn)(vi) < h, that is,

i∑
j=1

wj +
2k+2−i∑
j=k+1

wj < h. (4)

Inequalities (3) and (4) imply that

wi+1 ≥
i∑

j=1

wj ,

for 1 ≤ i ≤ k. Therefore, by induction on i, wi+1 ≥ 2i for 1 ≤ i ≤ k. In particular wk+1 ≥ 2k. �

The above result can easily be modified to give an improved lower bound of �φn/
√

5�, where
φ = (1+

√
5)/2. H̊astad [39] has found a weighted threshold function that requires weights at least

nn/2−O(n) (see Parberry [30] for a slightly better bound on this function).
Theorem 5.1 implies that the weights used in any polynomial size weighted threshold circuit

can be described using only O(n log n) bits. Of particular interest are weighted threshold circuits
that have weights ±1. Since every gate can be padded out with extra inputs that are fixed to 0
or 1 (to bring the threshold to exactly half of the number of inputs), these are identical in theory
to threshold circuits. (Recall that threshold circuits are built from majority gates, which are true
when the majority of their inputs are true, and unary negation gates).

It can be shown that polynomial size weighted threshold circuits compute exactly the decision
problems in P, and polynomial size, polylog depth weighted threshold circuits recognize exactly
the decision problems in AC. Things become far more interesting, however, with constant depth.
Let T C0 be the class of decision problems computed by threshold circuits of constant depth and
polynomial size. It is clear that T C0 �= AC0 since PARITY can be computed in depth 2 and linear
size, as follows.

A function f : IBn→ IB is called symmetric if its output remains the same regardless of the order
of the input bits.

Theorem 5.4 Any symmetric function can be computed by a threshold circuit with size 2n+1 and
depth 2.

21

Proof: A symmetric function can be uniquely defined by the set

Sf = {m ∈ IN | f(x) = 1 for all x ∈ IBn with exactly m ones}.

The circuit uses ‖Sf‖ pairs of gates. The ith pair has one gate active when the number of ones
in the input is at least the ith member of Sf , and the other gate active when the number of ones
in the input is at most the ith member of Sf . When given an input x such that f(x) = 1, exactly
‖Sf‖ + 1 of these gates are active, and when given an input x such that f(x) = 0, exactly ‖Sf‖
of these gates are active. The output gate can therefore be a gate with threshold value ‖Sf‖ + 1
whose inputs come from these gates. �

The exact relationship between AC0 and T C0 is not known. It has been conjectured that AC0

is contained in T C0 depth 3 (Immerman and Landau [16]); however, all that is known is that every
function in AC0 can be computed by threshold circuits of depth 3 and size nlogc n (Allender [3]).
There is no depth hierarchy theorem for T C0, although there is a depth hierarchy theorem for
monotone T C0 (that is, T C0 without Boolean negations, Yao [42]). In the general (nonmonotone)
case, it is trivial to separate T C0 depth 1 from depth 2, and depth 2 has been separated from depth
3 (Hajnal et al. [12]), but beyond that nothing is known.

It is known that the sum of n polynomial-bit numbers can be computed by a threshold circuit
in constant depth and polynomial size (Chandra, Stockmeyer and Vishkin[7]). It can be deduced
from this result and Theorem 5.1 (Parberry and Schnitger [31]) that any problem that can be solved
using a polynomial size, constant depth weighted threshold circuit can be solved using a polynomial
size, constant depth threshold circuit. That is, T C0 is the same even if weighted threshold gates
are used instead of majority gates.

6 Variations

The tools and techniques that we have surveyed in this paper are not limited to our simple feed-
forward model that we have used so far. Variations that appear in the literature include:

1. Networks with cycles. These can be unwound into feedforward neural networks in the obvious
manner (see, for example, Parberry and Schnitger [31, 32]).

2. Probabilistic neural networks. Allowing computers access to a random source appears to make
them more efficient than a plain deterministic computer in some circumstances (see, for ex-
ample, Cormen, Leiserson, and Rivest [10, Section 33.8]). In this case, it is sufficient for the
algorithm to compute the correct result with high probability, say 0.999. Surprisingly, such
a randomized algorithm can be replaced with a nonuniform one with only a small increase
in resources (Adleman [1]). This principle can even be applied to probabilistic neural net-
works such as Boltzmann machines (Parberry and Schnitger [32]). More specifically, uniform
probabilistic T C0 is the same as nonuniform T C0.

3. Analog node functions. Many neural network researchers use a continuous model (i.e. one in
which the neurons compute a continuous value). It can be shown that if one assumes that
neuron outputs are robust to small errors in precision, then their model is essentially the
same as a discrete one within T C0 (Obradovic and Parberry [26, 27]). More importantly, the
same is true even without the assumption of robustness (Maass, Schnitger, and Sontag [20]).
More specifically, any problem that can be solved by an analog neural network of polynomial
size and constant depth can be approximated by a T C0 circuit.

22

7 Conclusion

Circuit complexity is a useful tool for analyzing the scalability of neural networks, but its usefulness
should not be exaggerated. Whilst it tells us that, for example, analog and probabilistic neural
networks are not much faster or hardware efficient than discrete neural networks, they may well be
faster or more hardware efficient in practice (within the limits set down by the theory). The proper
interpretation is not that we should abandon analog neural networks and concentrate on building
discrete ones, but that it is only possible to build a polynomial size, constant depth analog neural
network for problems that approximate decision problems in T C0. This alone gives us a powerful
tool that enables us to decide exactly which functions can be evaluated efficiently by analog neural
networks.

Computational complexity theory can sometimes (but not always) distinguish between problems
that require exponential resource usage and those for which polynomial resources suffice, but often
even quadratic resource usage is too large. It remains an open problem to develop a complexity
theory of neural networks that is realistic, useful, and deep.

References

[1] L. Adleman. Two theorems on random polynomial time. In 19th Annual Symposium on
Foundations of Computer Science, pages 75–83. IEEE Computer Society Press, 1978.

[2] M. Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48, 1983.

[3] E. Allender. A note on the power of threshold circuits. In 30th Annual Symposium on Foun-
dations of Computer Science, pages 580–584. IEEE Computer Society Press, 1989.

[4] D. A. Barrington. Bounded width polynomial size branching programs recognize exactly those
languages in NC1. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, pages 1–5. ACM Press, 1986.

[5] A. K. Chandra, S. Fortune, and R. Lipton. Lower bounds for constant depth circuits for prefix
problems. In Proc. 10th International Colloquium on Automata, Languages, and Programming,
in Series Lecture Notes in Computer Science, volume 154, pages 109–117. Springer-Verlag,
1983.

[6] A. K. Chandra, S. J. Fortune, and R. Lipton. Unbounded fan-in circuits and associative
functions. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
pages 52–60. ACM Press, 1983.

[7] A. K. Chandra, L. J. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM Journal
on Computing, 13(2):423–439, May 1984.

[8] S. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,
64(1–3):2–22, 1985.

[9] S. A. Cook. Towards a complexity theory of synchronous parallel computation. L’Enseignement
Mathématique, XXVII(1–2):75–100, 1980.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

23

[11] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierarchy.
Mathematical Systems Theory, 17(1):13–27, 1984.

[12] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán. Threshold circuits of bounded
depth. In 28th Annual Symposium on Foundations of Computer Science, pages 99–110. IEEE
Computer Society Press, October 1987.

[13] S. E. Hampson and D. J. Volper. Linear function neurons: Structure and training. Biological
Cybernetics, 53:203–217, 1986.

[14] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transactions
of the American Mathematical Society, 117(5):285–306, 1965.

[15] J. Hong. On connectionist models. Technical Report 87-012, Dept. of Computer Science, Univ.
of Chicago, June 1987.

[16] N. Immerman and S. Landau. The complexity of iterated multiplication. Proc. 4th IEEE
Structure in Complexity Theory Conference, pages 104–111, 1989.

[17] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7(1):18–20,
1975.

[18] O. Lupanov. Implementing the algebra of logic functions in terms of bounded depth formulas
in the basis +, ∗, −. Soviet Physics Doklady, 6(2), 1961.

[19] O. Lupanov. Implementing the algebra of logic functions in terms of bounded depth formulas
in the basis +, ∗, −. Doklady Akad. Nauk SSR, 166(5), 1961.

[20] W. Maass, G. Schnitger, and E. D. Sontag. On the computational power of sigmoid versus
Boolean threshold circuits. In 32nd Annual Symposium on Foundations of Computer Science.
IEEE Computer Society Press, 1991, To Appear.

[21] M. Minsky and S. Papert. Perceptrons. MIT Press, 1969.

[22] S. Muroga. Threshold Logic and its Applications. Wiley-Interscience, New York, 1971.

[23] S. Muroga, I. Toda, and S. Takasu. Theory of majority decision elements. J. Franklin Inst.,
271:376–418, May 1961.

[24] S. Muroga, T. Tsuboi, and C. R. Baugh. Enumeration of threshold functions of eight variables.
IEEE Transactions on Computers, C-19(9):818–825, September 1970.

[25] B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kaufmann, 1991.

[26] Z. Obradović and I. Parberry. Analog neural networks of limited precision I: Computing with
multilinear threshold functions. In Advances in Neural Information Processing Systems 2,
pages 702–709. Morgan Kaufmann, 1990.

[27] Z. Obradović and I. Parberry. Learning with discrete multi-valued neurons. Proceedings of the
Seventh Annual Machine Learning Conference, pages 392–399, 1990.

[28] I. Parberry. Parallel Complexity Theory. Research Notes in Theoretical Computer Science.
Pitman Publishing, London, 1987.

24

[29] I. Parberry. A primer on the complexity theory of neural networks. In R. Banerji, editor,
Formal Techniques in Artificial Intelligence: A Sourcebook, volume 6 of Studies in Computer
Science and Artificial Intelligence, pages 217–268. North-Holland, 1990.

[30] I. Parberry. Circuit Complexity and Neural Networks. MIT Press, 1994.

[31] I. Parberry and G. Schnitger. Parallel computation with threshold functions. Journal of
Computer and System Sciences, 36(3):278–302, 1988.

[32] I. Parberry and G. Schnitger. Relating Boltzmann machines to conventional models of com-
putation. Neural Networks, 2(1):59–67, 1989.

[33] N. Pippenger. On simultaneous resource bounds. In 20th Annual Symposium on Foundations
of Computer Science, pages 307–311. IEEE Computer Society Press, 1979.

[34] P. Raghavan. Learning in threshold networks. In Proceedings of the 1988 Workshop on Com-
putational Learning Theory, pages 19–27, Cambridge, MA, August 1988.

[35] N. P. Redkin. Synthesis of threshold element networks for certain classes of Boolean functions.
Kibernetika, (5):6–9, 1970.

[36] D. E. Rumelhart, G. E. Hinton, and J. L. McClelland. A general framework for parallel
distributed processing. In Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, volume 1, pages 282–317. MIT Press, 1986.

[37] M. Sipser. Borel sets and circuit complexity. In Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, pages 61–69. ACM Press, 1983.

[38] J. H̊astad. Improved lower bounds for small depth circuits. In Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing, pages 6–20. ACM Press, 1986.

[39] J. H̊astad. On the size of weights for threshold gates. Unpublished Manuscript, 1992.

[40] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

[41] A. C. Yao. Separating the polynomial-time hierarchy by oracles. In 26th Annual Symposium
on Foundations of Computer Science, pages 1–10. IEEE Computer Society Press, 1985.

[42] A. C. Yao. Circuits and local computation. In Proceedings of the Twenty First Annual ACM
Symposium on Theory of Computing, pages 186–196. ACM Press, 1989.

25

