Theoretical Computer Science 43 (1986) 43-58 @
North-Holland

ON THE CONSTRUCTION OF PARALLEL COMPUTERS
FROM VARIOUS BASES OF BOOLEAN FUNCTIONS

Leslie M. GOLDSCHLAGER
Basser Department of Computer Science, University of Sydney, New South Wales 2006, Australa

lan PARBERRY
Department of Computer Science, The Pennsylvania State University, University Park, PA 16302,
USA.

Communicated by J.D. Ullman
Received April 1983
Revised March 1984, August 1985

Abstract. The effects of bases of two-input Boolean functions are characterized in terms of their
impact on some questions in parallel computation. It is found that a certain set of bases (called
the P-complete set), which are not necessarily complete in the classical sense, apparently makes
ircuit i i Boolean
gates cqual 1o general parallel computers. A class of problems called EP naturally arises from
this study, relating 1o the parity of the number of solutions (o problem, in contrast (0 previously
defined the numbe
(NP). Tournament isomorphism is a member of EP.

1. Introduction

Complexity theory seeks to formalize our intuitive notions of computational
difficulty. Whilst in many cases we are intuitively sure that certain functions are
more difficult to compute than others, very rarely can we actually prove it (the
classical example is that of NP-complete problems [3, 11]). However, it is often
possible to classify small classes of functions according to their relative complexity,
as we shall do here for the two-input Boolean functions. It has also recently been
shown [8] that our results hold equally well for Boolean functions with more than

two inputs.
The motivation for our i i ining time-bounded
parallel (equi bounded sequential) ions involving the two-

input Boolean functions. The main body of this paper is broken up into three
sections. The first is on the space complexity of the circuit value problem over

0304.3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

w“ LM. Goldschlager, 1. Parberry

two-input bases, the second the computing power of time-bounded extended Turing
machines over two-input bases and the third the ability of two-input bases to realize
parallel machines.

The circuit value problem over basis B (CVP, or more precisely, CVPy) is the
problem of determining, for a given combinational circuit and its inputs, the value
of the output. By a combinational circuit over basis B we mean a circuit without
feedback loops, built using gates which realize functions drawn from a set B. Ladner
[12] and Goldschlager [5] have shown that the circuit value problem over complete
bases and the monotone circuit value problem respectively are log space complete
for P. This means that circuit value problems over these bases are in a sense among
the most difficult in P. For if they can be computed in O(log" n) space, then so can
every member of P.

‘The parallel computation thesis [2, 7] states that time on any ‘reasonable’ model
of parallel computation is polynomially related to space on a deterministic Turing
‘machine. Thus, the circuit value problems over complete and monotone bases are
unlikely to have an exponential speedup on a parallel computer. We classify the
two-input Boolean functions according to the effect which their presence in a basis
has upon the complexity of the circuit value problem over that basis. We find that,
for the two-input bases B, cither CVPy is log space complete for P, or it can be
computed in O(log? n) space.

Among the ‘reasonable’ models of parallel machine architecture is the alternating
Turing machine of 2], This differs from the standard nondeterministic Turing
machine only in the manner of defining acceptance. The states of an alternating
Turing machine may be labelled AnD (universal), O (existential), No (negating),

\cCEPT, Or REJECT. This labelling is extended to configurations in the obvious way.
A configuration is deemed to be accepting if it has an accept state, or if it is universal
and all successor configurations are accepting, or if it is existential and some

is accepting, orif
is not an accepting configuration. We generalize this by allowing the states to be
labelled with a larger range of functions, in particular, the two-input Boolean
functions. We prove that extended Turing machines over two-input Boolean bases
B are as powerful as parallel machines iff the circuit value problem over basis B is
log space complete for P.

Furthermore, there are four language classes recognized by polynomial time
bounded extended Turing machines over the bases whose circuit value problem can
be computed in log® space. The first three are the familiar classes P, NP, and Co-NP.
The fourth is a less familiar class which we shall call EP. A language in EP is the
set of strings for which there is an even parity (or equivalently, odd parity, since
we will find that EP is closed under complementation) number of solutions to a
given problem, just as NP is the et of strings for which there is at least one solution.

y studied model of parallel machi

munf[ur
We restrict these machines to bases B of two-input Boolean functions and show

Construction of paralll computers from bases of Boolean funciions as
that they are as powerful as parallel machines iff the circuit value problem over B
is log space complete for P.
2. The circuit value problem

We shall use the standard definitions of space and time on a Turing machine

(see, for example, [1,9]). Let P be the class of languages recognizable in polynomial
time by a deterministic Turing machine.

Definition. A language A is log space transformable to B (written A <, B) if there
exists a function / computable in log space such that, for all w, we A iff f(w)< B.
A language B is log space complete for P if B P and, for all AP, A<,,, B.

Lemma 2.1. (i) If B is log space complete for P, B <., A and A€ P, then A is log
space complete for P.

(ii) I B is log space complete for P and is recognizable in O(log* n) space for some
constant k=1, then every A€ P can be recognized in O(log* n) space.

Definition. B, = {f:{0,1}" {0, 1}} is the set of n-input Boolean functions. We will
denote the elements of B; by 0, 1, x, y, 7%, <, ©, ©, A, v, 1, }, =, #, «, # for
0,1, left identity, right identity, left negation, right negation, equivalence, exclusive-
or, and, or, nand, nor, implies, not implies, is implied by, is not implied by,
respectively.

Definition. A circuit over basis B< B, is a sequence C =(g,, ..., g,), where each g,
is either a variable x,, x., ... (in which case it is called an input) or f(j, k) for some
function /€ B (in which case it is called a gate), i, k. An input assignment is an
assignment of values v(x) € {0, 1} to the variables x, of C. The value of a circuit C
at gate g, v(C, g, is given by
o(Cx)=v(x), o(Cf(j, k) =f(o(C g), v(C &)

The value of a circuit C is defined to be v(C) = v(C, g,). The circuit value problem
CVP, ={C[uo(C)=1}.

Lemma 2.2 (Ladner [12]). If B is a complete basis, then CVPy is log space complete
Jor P.

Lemma 23 (Goldschlager [5]). If {x, v}< B, then CVP, is log space complete for P.
Lemma 2.4. If B (=, #, <, #} #0, then CVPy is log space complete for P.

Proof. {», 1} is complete, and hence, by Lemma 2.2, CVP,..,-, is log space complete
for P. Furthermore, CVP,...-) <10, CVPy, where B={=1}, {#}, {<}, or {#} since -x
can be replaced by -0, 1 x, 0« x, or x « 1, respectively, and x> y can be replaced
by x=y, 14 (x4y), y«x or (y#x)#1, respectively. [

% LM Goldschlager, L Parberry

Lemma 2.5, 1f B contains {», <>}, {v, <>}, {, @), or {v, @}, then CVPy is log space

complete for P.

Proof. CVP,...; i, CVPp, where B= (1, o}, {v, s}, {n,®}, or {v,®} since

aeb)e(anb), avb=(a®b)®(anb),
anb=(asb)es(avh), anb=(a®b)®(avb),

respectively.]

Definition. Let C =(g,,...,g,) be a circuit. Define a path of length u from g, to g,
as follows. There is a path of length 1 from g to g, if there exists a k< n such that
8=/(8, 8) or &= /(8 &)- A path of length u> 1 from g, to g, is a path of length
u=1from g to g and a path of length 1 from g t0 g.

Definition. Let C =(g,,...,8,) be a circuit. Define the function odd, (g, g) to be
true iff there is an odd number of paths of length u from g, to g, in C. Further,
define 0dd(g, g)) 10 be true if there is an odd number of paths (of any length) from
810 g Thus,

odd(g, g) = é‘; 0dd. (g, &)

Lemma 2.6. Let C =(g,,...,8,) be a circuit over basis {®). For 1= j<n the value
of the circuit at gate g, is given by

vig)= @ (odd(g,g)Av(g)).
inpats .

Proof. The proof follows by induction on j, noting that 2" distributes over “®"

(ie, an(b®c)=(anb)®(anc)).
Lemma 2.7. Let C=(g,,..., g,) be a circuit over {®}. If u>d =1, then
o0dd,(ga g,)=§")_l (0dd,(g, 8) 7 0dd, 4 (8k 2)).
Proof. The proof follows by induction on u.]
Consider the following procedure.
Boolean procedure path(i, j, k)

commentreturns true iff there exists an odd number of
paths from g to g of length k.

1then 3 an odd number of connections from g, to g
else §)I (path(i, | [1k1) 2 path(L j, 3k])).

Lemma 2.8. path(i, j, u) = 0dd.(g,).

Consiruction of parallel computers from bases of Boolean functions @
Proof. The proof follows by induction on u, using Lemma 2.7 with d = [tu]. O
Lemma 2.9. CVPe, can be solved by a deterministic Turing machine in O(log” n) space.

Proof. Let C =
computes

-+, 8) be a circuit over {®}. Consider the program which

@ & (path(i, n, u)a vlg)).

iopuis 5021
This uses O(log®) space (since the depth of recursion is O(log n)), and

(path(i, n, u) A v(g)

) ((@ odd, (g, g.)) A u(g.)) by Lemma 2.8

=v(g,) by Lemma 26
as required. O
Lemma 2.10. CVPs), CVP,..,, CVP(s..,, and CVPy.. ., are all log space equivalent.
Proof. To prove the lemma, use the identities a® b =(aeb) =(na) b O
Lemma 2.11. CVP,, and CVP,., can be solved by a deterministic Turing machine in
O(log® n) space.

Proof. A simplified version of the proof of Lemma 2.9 will suffice, since a circuit
built from Or gates is true precisely when there exists a path from the output to a
true input, and a circuit built from AND gates is false precisely when there exists a
path to the output from a false input. C)

Definition. A function f(x, y) is monotone if, for all x,=x; and y, = ya, f(xi, y,) <
f(xs, y2). Function f(x, y) is linear if it can be expressed in the form

a,®(a, A X)@(any),

where ay, a,, a;€ {0, 1}.

The two-input Boolean functions fall into four classes induced by the properties
of linearity and monotonicity (see Table 1). We call the functions which are both
linear and monotone “trivial’, those which are linear only ‘easy’, those which are
monotone only ‘moderate’, and those which are neither linear nor monotone *hard".
If the gates in basis B are all easy or trivial, then CVP, is easy (i.c., can be solved
in log* space). If B contains at most one moderate gate (and the rest trivial), then
CVP, is easy. If B contains two moderate gates, or a moderate and an easy gate,
or a hard gate, the CVP, is hard. This is summed up by the following theorem,
which follows from the above lemmas.

% LM. Goldschlager, 1. Parberry.

Table |
Complexity classes of functions in B,. An entry of 1 under property p of gate g
indicates that g has property p (where p is monotonicity or lincarity)

Function Name Linear Monotone Class

False 1

rue 1
Left identity 1
Right identity 1

Trivial

Left negation
Right negation
Equivalence
Exclusive-or

1
1
1
1

o
]

o1y

Y ; 0 kb

or

Nand

Implies

R
z52
£}

Not implied by

‘Theorem 2.12. CVP is log space complete for P if either:
(1) B contains a gate which is not linear, and a gate which is not monotone, or
() {a,v}cB,

and is solvable in O(log® n) space otherwise.

3. Extended Turing machines

The definition of an alternating Turing machine (ATM) in [2] can be generalized
to allow the labelling of nonfinal states with any reasonable function.

Definition. An extended Turing machine (ETM) is a nine-tuple M=
(D, B,k Q X, T, 5,0, 8), where D is the problem domain (0,1¢ D; LgD), B=
{fis---.fu} s a finite set (basis) of fixed-arity functions /; with arity a0 respec-
tively, fi: D* > D, 1< i< n, k is the number of work tapes, Q is a finite set of states,
X is a finite input alphabet, I' is a finite work-tape alphabet, 5c
(QxI*xX)x (QxI'™* x{left, right}*"") is the next-move relation, go& Q is the initial
state, and g:Q» Bu D.

Definitions. A configuration of an ETM M = (D, B,k Q, X, I o, g) is an element
of Cp= QX Z*x(I'*)*xN“"", where N denotes the set of natural numbers. If a
and B are configurations of M, we say that is a successor of a (written ai-g) if

Construction of parallel computers from bases of Boolean functions w9

B follows from a in one step according to the transition function 5. The initial
configuration of M on input x is oy (x)=(go, x,A*, 0“*'), where A denotes the
empty string.

The semantics of an extended Turing machine are analogous to those of an
alternating Turing machine. We give a brief sketch, following the formalism of [2].
We insist that the transition function § is such that, for all states g€ Q, every
configuration containing ¢ has exactly arity(g(q)) successors, where elements of
the domain D are interpreted as functions of arity 0. W

For f: D%~ D where 0c D, LgD we define the monotone extension f:(Du
{L}*>DuU{L} of fas follows. If x& D?, then f(x)=f(x) and, for 1=m=a, if
xeD™ ' and ye (Du{Lh* ™™,

_[F(x0,y) if, forall de D, f(x,0,5)=f(x,d,y),
s o9= [¢ otherwise.

For example, the monotone extensions of some functions in B, are shown in
Table 2. =

A labelling of configurations is a map

1:Cy=Du{1}.

Let 7 be the operator mapping labellings to labellings defined as follows. Let
M=(D,B,Q, 3,1, 3,qo g) and « be a configuration of M with state ¢. Assume a
total ordering on the elements of 3, so that we can order the B such that a+g. Then,
g(q) ifg(q)e D,
JUB,... 1B ifg(g)=f and at-p,1<i<a.
If we define the relation “<" by L=d for all d € D, then r has a least fixed point
1* with respect to <"

1(1\1a)={

Definition. An ETM M accepts x iff 1*(y(x)) = 1, M rejects x iff *(0y(x)) =0, M
halts on x iff M accepts or rejects %, and the language accepted by M, L(M)=
{xeX*|M accepts x}.

Table 2
Extensions of some functions in B; to domain (0, L, 1}

A ‘ e R [e
1 |[S See) Lk et
borks Liotgebiaa-40; Lzohilosmm Ll
olo o o G g ool SR
Semerts tadt xwof o0k g ol
b [RaltT Seciined Lailon0i yidalgm
i oy R PP T b vy
Pope e (195 b b kg)

0 LM. Goldschiager, I. Parberry

Theorem 3.1.. The extended Turing machines with computable bases precisely accept
the r.e. sets.

Note that extended Turing machines with domain the natural numbers and basis
{+} are the counting Turing machines of Valiant [15]; and if we choose the domain
to be the Boolean set {0, 1}, ETM's with basis {x, v, 1} are alternating Turing
machines, those with basis {v} are nondeterministic Turing machines, and those
with basis {#} are co-nondeterministic Turing machines. Since our interest lies with
the two-input Boolean functions, we will henceforth restrict ourselves to extended
Turing machines with D ={0, 1}, B< B,.

The concepts of ETM time and space can be defined in the same manner as ATM
time and space [2].

Definition. Tiveq(7(n)) and SPacE »(S(n)) are the class of languages accepted by
an ETM over basis B in T(n) time and S(n) space, respectively.

Definition. Primey =1J,_, Timeg(n*).
Definition AP=PTie,, -, NP=Prime.), and Co-NP= Prime,.,.

Definitio

A basis is called P-complete iff CVP, is log space complete for P,
Theorem 3.2. For all P-complete bases B, B'< B,,
TiMEy(T(n) € Timen (dT(n)), Seaces(S(n)) < Spacey(S(n))

Jor some constant d.

Proof. In [2, Theorem 2.5] the result is proved for B={x, v, 1} and B'={x, v}.
The technique used is similar to the one used to show that the monotone circuit
value problem is log space complete for P (Lemma 2.3). De Morgan's laws are used
10 push the negations down to the final states in the same manner as they are
used to push the negations back to the inputs in the monotone circuit value problem.
A similar modification to the proofs of the P-completeness of all such B gives the
required results. (]

Thus, extended Turing machines over the P-complete two-input Boolean bases
are just as powerful, to within a constant factor, as alternating Turing machines.
Chandra, Kozen and Stockmeyer 2] have shown that alternating Turing machines
are as powerful, to within a polynomial, as any parallel machine. Theorem 3.2
implies that the complexity results on alternating Turing machines (notably [2,
Theorems 3.1-3.4, and Corollaries 3.5 and 3.6]) apply equally well to extended
Turing machines over P-complete bases.

Construction of parallel computers from bases of Boolean funcrions st

Theorem 3.3
TiME(e)(T(n)) = TIME(y(T(n)) = TIME (@, o) (T(n)) = TIME (g, .. (T(n)).

Proof. A simple modification to the proof of Lemma 2.10 suffices to give this
result.

Definition. ETiME(T(n)) = TimE(e(T(n)) and EP= Prime s

At this stage we have four interesting classes of languages accepted by polynomial
time bounded extended Turing machines. The most powerful class is that recognized
by machines over a P-complete basis, exemplified by alternating Turing machines.
In the light of Theorem 3.3, we see that the remaining languages fall into the three
classes accepted by polynomial time bounded extended Turing machines over the
bases {n}, {v}, and {@). Machines over the first twa bases are nondeterministic and
co-nondeterministic Turing machines, respectively. Languages in the corresponding
polynomial time bounded classes NP and Co-NP are well-studied (see, for example,
1,4).
Thelast class s EP, the class of in polynomial ti

Turing machines over basis {&} (E for Equivalence of Exclusive-or). The classical
open problems regarding the relationships between P, NP, and Co-NP can be
extended to include EP. For example, one might wonder whether or not NP
Co-NPAEP=P (see Fig. 1)? As with the question *P# NP? there are complete
problems for the question P # EP?"

Definition A language A is (many-one) reducible to B (written A <, B) if there
exists a function f computable in polynomial time such that, for all w, we A iff
S(w)e B.Alanguage Bis said to be EP-complete if B EPand, forall Ac EP, A <, B.

—

Fig. 1. The class EP.

2 LM. Goldschlager, 1. Parberry

Definition. Parity-SAT is the set of Boolean formulae which have an odd number
of satisfying assignments.

Theorem 3.4. Parity-SAT is EP-complete.

Proof. Clearly, parity-SAT & EP. We follow the proof of Cook's theorem (see, for
example, [1]). Given an extended Turing machine M with L(M)<EP, we can
encode it as a Boolean formula, as if it were a nondeterministic Turing machine.
Without loss of generality, assume that M has only exclusive-or states. Then M
accepts input x iff there is an odd number of accepting computation paths of x iff
there is an odd number of satisfying assignments to the Boolean formula of M. C1

Similarly, determining the parity of the number of solutions to NP-complete
problems is EP-complete providing the reduction from SAT is solution-preserving.
The generalized Ladner's theorem [10] tells us that (provided EP# P) there are
problems in EP which are neither in P nor EP-complete. A candidate is tournament
isomorphism, which is not known to be in P (the best known algorithm is the n°'** "
time algorithm of [13]). Tournament isomorphism is in EP since the automorphism
group of tournament has odd order (hence, the number of isomorphisms between
two tournaments is either zero or odd).

Networks

In Section 2 we classified the two-input Boolean functions according to the effect
which their presence in a basis has upon the complexity of the circuit value problem
over that basis. Subsequently, we showed that this classification has relevance to
the computational power of extended Turing machines. In this section we give a
further application of the classification in terms of the computational power of
(possibly eyclic) networks of two-input Boolean gates.

Cyclic networks are formalized in a similar manner to ‘conglomerates which are
a parallel machine model introduced in [7]. Informally, conglomerates consists of
synchronous finite state machines communicating via an interconnection network.
When the pattern of the interconnections is computable in polynomial space (o
equivalently polynomial parallel time), then the resulting class of conglomerates
turns out to be as powerful, to within a polynomial, as any parallel machine.

Definition. A network over basis B is a four-tuple C = (1, G, £, h), where G is an
infinite set of gates G, for all integers i< Z such that each gate in G realizes a
function from the basis B, and

(1) I is the finite input alphabet, ¥ &

(2) h:Z={1,2,...,|B]} is defined so max h(j)=iif G realizes the ith function
in B,

Construction of parallel computers from bases of Boolean funcrions 5

() f:{1,2,..., r}*> Z U {TRUE, FALSE, &\, ¢} is the connectior. ~defined
similarly to that of conglomerates, where r is the maximum fan-in of any function
in B, TRUE and FALSE represent an input being always 1 or always 0 respectively,
and 6, &, represent an input being connected to the corresponding ports of 4
two-phase clock (sce Fig. 2).

A computation of the network over basis B begins at time 0 with the outputs of
gates Gy, Gy,..., G-y being set 10 wy,..., W, where w,,...,w, is a Boolean
representation of the input string over alphabet 1. This Boolean representation of
the symbols in 7 (K} is such that some fixed number of bits are used to represent
each symbol. The outputs of gates Gy, Gapen,.. and G-y, G, ... are initially
set to the Boolean representation of an infinite sequence of blanks ¥, and, for all
integers i, the output of gate Gy, will initially be set to the negation of the output
of gate Gy,_,. The reason for this input convention will become apparent shortly.
Note that the network can detect the end of the input string by checking for the
first trailing blank character.

Fig. 2. Two-phase clock.

Each type of gate has an associated delay time—some integral number of time
quanta—during which it computes its corresponding function of the values on its
inputs, setting its output value equal to the result. The computation proceeds in
discrete steps so that an input connected to &, of the clock will have the value
imod 2, and an input connected o &, will have the value (i+1) mod 2, during step
i of the computation. Each discrete step of the computation represents some fixed
period of time, measured as an integral number of time quanta.

The network over basis B is said to accept its input w iff the output of G, is ever
€qual to 1. C accepts w within time t iff the output of Gy is equal to 1 on or before
step 1 of the computation. C accepts a language L< I* in time T(n) if, for cach
we L, C accepts w within time T(|w|), and, for each w L, C does not accept .

Both conglomerates and networks have enormous computational power depend-
ing on the complexity of the connection function f and the function h. However,
it has been shown [7] that if f and h are computable in polynomial space (i.c.,
parallel polynomial time), then the computational power of conglomerates does not
exceed that of other parallel computer models such as alternating Turing machines.

st LM Goldschlager, I. Parberry

So we are interested in studying the relationship between our classification of the
two-input Boolean functions and the computational power of networks whose
functions are computable in polynomial space.

‘Theorem 4.1
NETWORK-TIME 5(T(n)) S CONGLOMERATE-TiME(d"T(n))

Jfor some constant d.

Proof. The gates of the network over basis B can be simulated by finite controls,
Each finite control can ‘know' which gate from B it is simulating by leaving
appropriate inputs to that finite control unconnected. Also, each finite control will
count up to the number of time quanta which represent the delay time of the gate
being simulated. Only after that delay time has elapsed will the finite control update
its output value. The two-phase clock can be simulated by two finite controls, one
representing &, and the other 6, which simply count the number of time quanta
starting from time 0, the count being modulo the number of quanta which comprise
one step of the computation of the network. It is straightforward to check that the
connection function of the conglomerate as constructed above can be computed in
polynomial space, given that f and h of the network can be computed in polynomial
space. O

‘Theorem 4.2. For all complete bases B,

CONGLOMERATE-TIME(T(n)) € NETWORK-TIME 5(2T(n)).

Proof. Each finite state machine in the conglomerate can be replaced by an
equivalent combinational circuit over basis B, and a finite number of memory
elements. These memory clements can be clocked by the regular clock pulses and
their inputs fed back into the inputs of the combinational circuit in order to simulate
the finite state machines in the standard way. If B is complete, the memory elements
may be constructed using a cyclic network of gates of B forming ‘lip-flop’ circuits,
e.g,if B={x, v, 1}, the flip-flop could be as in Fig. 3. The number of time-quanta
comprising one step of the computation should be chosen to be greater than the

4 %

input: utput

¢V ’!

Fig. 3. Standard flip-flop.

Construction of parallel computers from bases of Boolean functions 55

longest delay through any of the combinational circuits as constructed above. So,
cach step of the conglomerate is simulated by two steps of the network. It is
straightforward to check that fand h of the network can be computed in polynomial
space, given that the connection function of the conglomerate can be computed in
polynomial space.

Theorem 4.3. For all P-complete bases B,
CCONGLOMERATE-TIME(T(n)) < NETWORK-TIME(2T (n)).

Proof. Consider the case when B ={», v}. We will perform a similar simulation to
that of Theorem 4.2, except that no NoT gates are available for use in the network.
The standard memory element shown in Fig. 3 can be replaced by a ‘monotone
memory" element shown in Fig. 4.

% %

%
it 4. Monstons mecgory” et

‘This monotone memory element operates in a similar fashion to the standard
flip-flop. When &, =0 and &, = 1, x and y retain their previous values, independent
of any change in the input value. Furthermore, the value of x (=) will be copied
into the second stage (i.c., output=x =). This two stage memory element is used
to eliminate ‘race conditions' which could otherwise occur in a cyclic network.
The combinational circuits introduced in the proof of Theorem 4.2 may also
contain Not gates, which need to be eliminated in the current simulation. The idea
is t0 use *double rail logic’ [S]. Assuming that for each input x to a combinational
circuit another input < is available which carries its negation —x, cach AND, OR,
and Nor gate may be replaced by only AND and O gates as shown in Table 3.
It is clear from Table 3 that for every output of the new combinational circuit
there will be an additional output 7 which carries its negation —1z. Therefore, if two
monotone memory elements are utilized, one for z and the other for 1z, then our
assumption that the negation of each input to the combinational circuit is available
will be met. In addition, any input connected to TRUE or FALsE will have to have
its negation connected to FALSE or TRUE, respectively. It remains to ensure that the
values on all the wires start correctly at the beginning of the simulation. This is
achieved by the input convention which has the negation of each input initially

s6 LM. Goldschlager, I. Parberry

Table 3.
“Double rail logic'

original gate
Xy
Xy

‘Thus, the theorem holds when B={», v}, the complexity of the network increasing
by no more than a constant factor. The theorem holds for all other P-complete bases
B using the techniques of Lemma 2.4 and 2.5.

Theorem 4.4. If B is not P-complete, then networks over basis B cannot in general
simulate conglomerates (or any other general purpose parallel computer).

Proof. Assume to the contrary that some basis B which is not P-complete can be
used to simulate an arbitrary conglomerate. Then, in particular, it can be used to
simulate the conglomerate which computes the NAND function NAND(by, bs) =
S(bi, by, by, 71bs). Thus, a (possibly cyclic) network of gates from B can simulate
the NAND function in some particular time «. Now, such a network can be ‘unrolled”
into a combinational circuit with depth at most dt for some constant d [14]. Also
note that any clock signals coming into a gate in the unrolled circuit can be set to
a constant value representing the value of the clock signal at the particular time in

Construction of parallel computers from bases of Boolean funciions s

the computation which the depth of that gate represents. Thus, there is a fixed
combinational circuit over basis B which computes the NAND function from the
values of two inputs and their negations. Hence, CVP(;) i, CVPy and so B is
P-complete, contradiction. (]

Loosely speaking we can summarize this section by saying that a particular basis
B B, can be used to build general purpose machines iff B is P-complete.

5. Conclusions

We have examined bases of two-input Boolean functions, and defined the notion
of a basis being P-complete. With reference to Table 1, a basis is P-complete if it
contains at least one ‘hard" function, or two ‘moderate’, or a ‘moderate” and an
“casy’ one. The remaining bases of two-input Boolean functions are not believed to
be P-complete (unless P=Spack(log* n) for some constant k).

If a basis is P-complete, then the circuit value problem over that basis is probably
inherently sequential, and extended Turing machines and Boolean neworks over
that basis are powerful parallel machines. The remaining bases are not suitable for
building general purpose parallel machines, and the circuit value problem over them
can be solved quickly on a parallel machine.

However, the bases which do not appear to be P-complete can be further classified
into four groups according to their apparent effect on the computational power of
extended Turing machines. These four it as exemplified by (v}, {»}, the
one-input functions, and (@)
ministic, deterministic, and the new class of | punly computations.

6. Further work

How do planar circuits behave over different bases? For example, it appears that
{x, v} is not a powerful computational basis for planar circuits [6]. It would be
nice to know more about the class EP. (For example, is it identical to a previously
studied class?) What is the relationship between EP, P, NP, and Co-NP? Is there a
“natural’ problem which is EP-complete?

Acknowledgment

We would like to thank Michael Hickey for his contribution to the ‘monotone
memory’ elements of Section 4.

58 LM. Goldschiager, I. Parberry
References

(1] A.V. Aho, LE. Hoperoft and J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, MA, 1974).

[2] AK. Chandra, D.C. Kozen and L. Stockmeyer, Alternation, J. ACM 28(1) (1981) 114-133

[3] S.A. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symp. on Theory of
Computing (1971) 151-148.

[4] MR. Garey and DSS. Johnson, Computers and Intractability: A Guide o the Theory of NP-
Completeness (Freeman, San Francisco, CA, 1979).

[5] LM. Goldschlager, The monotone and planar circuit value problems are log space complete for
P. SIGACT News 9(2) (1977) 25-29.

[6] LM. Goldschiager, A space efficient algorithm for the monotone planar circuit value problem,
Inform. Process. Lett. 10(1) (1980) 25-21.

[7) LM. Goldschiager, A universal interconnection pattern for parallel computers, J. ACM 29(4)
(1982) 1073-1086.

(8] LM. Goldschlager, A characterization of sets of m-input gates in terms of their computational
power, Tech, Rept. 216, Basser Dept. of Computer Science, Univ. of Sydney, 1983,

(9] N.D. Jones and W.T. Laaser, C¢ . Theoret. Comput.
S6i.3(1977) 105-117.

(10] T. Kamimura and G. Slutzki, Some results on pseudopolynomial algorithms, Tech. Rept. TR-80-6,
Dept. of Computer Science, Univ. of Kansas, 1980.

[11] RM. Karp, Reducibility among combinatorial problems, in: J.W. Thatcher, ed., Complexity of
Computer Computations (Plenum Press, New York, 1972).

(12] RE. Ladner, The circuit value problem i log space complete for P, SIGACT News 7 (1) (1975) 18-20,

[13] EM. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, Proc.
215t Ann. IEEE Symp. on Foundations of Computer Science (1950) 42-49.

[14] JE. Savage, Computational work and time on finite machines, J. ACM 19(4) (1972) 660-674,

(15] LG. Valiant, The complesxity of enumeration and reliability problems, SIAM J. Comput. §(3)
(1979) 410-421

