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1. INTRODUCTION

One of the interesting problems in artificial intelli-
gence is the development of a plausible low-level
model of cortical activity. Much research is currently
aimed at determining whether these low-level models
can emulate.high-level cortical functions such as
learning. The discovery of simple models which can
mimic the brain may throw some light on the fun-
damental principles governing brain function, or at
the very least may comparable systems
may be implemened i sicon o 4t s inspiration
for a new technol

Gonusctiouist models of e bisin Have seseatly
regained popularity amongst researchers in artificial
intelligence. The connectionist model (sometimes
termed a neural network) is an interconnected set of
simple neuron-like processing elements. One such
‘model is the Boltzmann machine (see Ackley, Hin-
ton, & Sejnowski, 1985; Hinton & Sejnowski, 1986;

threshold value, and each edge with a weight, both
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. Scalable model,

of which are integers. Each processor can be in one
of two states, which are called active and inactive,
and can change state as follows. At time fit computes
the sum of the weights of the edges connecting it to

active or inactive state to represent
the input in binary. The output is similarly encoded
in the sitcs of  dtingakhed st of output vorbees
on completion of the computation.

rmann machin loams by modiying s odge
weights during the course of a “learning phase” in
which inputs and their corresponding outputs are

date (e.g.. Ackley, Hinton, & Sejnows
100 & Sefnomsks 1966; Hiaton, Sejoomk
ley) once a function  has been learned by the Boltz-
mann machine, the performance of the learning
algorithm is measured by fixing the weights and com-
paring the desired function f o the function com-
puted by the Boltzmann machine acting as a classical
automaton. 1t is instructive to characterize the func-
tions which can be computed efficiently by the Boltz-
‘mann machine in this “classical mode,” since if there
is no weight assignment which allows efficient com-
putation of f, then a Boltzmann machine cannot learn
to compute f efficiently.

s of ruwning ime 40 fardvare wil

which tho machingt ars 9 soie. 1t Wl
that the connection graph can be made acyclic, the
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machine can be made deterministic (that i, all ran-
‘dom behaviour can be removed), and all edge-weights
e be made cqunl 0wty That 5 o
‘machine can be reduced to
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Eick St hemion e (o & e g
ber of inputs) will be depict cles for ver-
tices, and lines connecting e cdace: Tho dh

uit
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cuit will have running time greater by a constant

mltile and hardvare requirement gratr by a
polynor

The der of this paper is broken up into si
il soctions. Tinthe i o & isnaldetnirion

a Boltzmann machine is presented, and in the
second setion a formal defiokion f & computation
of this machine is given. In the third section the
‘model is augmented with conventional deterministic
processors and random inputs. In the fourth section
it is demonstrated that cycles can be removed from

effectively reducing the model t0 a standard com-
bination circuit. A preliminary version of this paper
appears in Parberry and Schnitger (1987).

2. THE BOLTZMANN MACHINE
Itis natural to focus on Boltzmann machines which
are, in neural networks terminology, scalable, that
is, can be scaled to problems of any size withou

rection of along these edges may be
assumed o be from top to bottom, unless explicitly
indicated by the presence of arrowheads. Threshold
valosy will b e Jad e sppcoprise veries,
and weights alongside the appropriate edges. Each
e iet I SR B Bt i e
cessary, the name appearing next o the relevant
Vetex: Pgare 1 hows & Supie Ewosprocessr aa-
ke
A computation of B on an input x consisting of
bits (write x € {0, 11) i defined s follows. A time
1= O the input processors of B, are placed into states
which encode x. That is, the processors in /, are
‘numbered consecutively, and the ith such processor
is placed in the active state if the th bit of x is one.
The rs of A, are also placed in the active
e AT ot peceme e pis it
state. The processors are then allowey inge
state according to the following rules. ™ e
tations are clocked, that is, there is a global clock
n (in order to avoid
ions and the effects of spurious behavior
during state-change). Three modes of computation
S e e

Minor

modifications to the standard definition of Boltz-

‘machines must be made in order to render such

a study possible. A Boltzman machine will be con-
sidered 0 be an CelE e

e for cach input size. Each

i e B, Sais o

- A directed graph G, = (V,, E,). V,
ices or processors, and E, C V,

s @ set of
X V, isaset

5 guished set of input processors, I, C V,
. A distinguished st of output processors, O, C
v,

4. A distinguished set of initially-active processors,
nl

. Athreshold assignment, h,: V, — Z, which as-

signs a threshold to every pm(essm
6. A weight assignment, w,: V, X V, - Z, which
assigns a weight to every edge. Itis useful to adopt
the convention that if (u, v) € E,, then w,(u, v)

for each processor a nd time a umperamre e
Semperature® can be vilSt it (i irortet

perform simulated annealing (after Kirkpa-
iRk, Gelae, & Vecei, 1989

et b pdassd g oac ik s
All other processors maintain their

A ParalelgasatiAEAL et s opdensd
it e bl Ourin cad ock s
and maintains its state otherwise.

. Synchronous parallel operation. Every processor
is updated during every clock cycle.

‘The state of an individual processor v is updated as
follows. Define the output of processor v at time ,
written Uy(v, 1), to be 1 if v is active at time ¢ and
0if it is inactive. Define the input to processor v at
time ¢ > 0, written W,(v, 1), 10 be the sum of the

1 1
A B
e
FIGURE 1. A Boltzmann machine for n = 1 roo-
essors, labelled “A” and *B." , = (4), 0, = (8} and 4, =
0



Relating Bolizmann Machines

weights of edges connecting it 10 processors which
were active in the previous step, that s,

W0 = 3w UG, - 1)

Then  is active at time ¢ with some probability

PWa(v, 1) = hy(v), v, l) Typically, in the literature
the activation probabi ion
L
P80 = e

i uacd, b i b gt cuca o the teuls ko bo
discusse r. Note that although input

P i e el i R TIG S
putaton, they can be clamped” (as i pretred in
wch

6l

said t0 accept x if the computation of B, on input ¥
terminates with the output of the output processor
equal 10 1, and to reject x otherwise. A language L
is a set of strings of zeros and ones. B is said to
recognize a language L if it can determine whether
or not an input x belongs to L with probability of
ertor bounded away from 0.5. That i, it recognizes
L iff there is a real number e > 0 such that

() forall € L, th pobabily that 5 scepts x

(i) |0r i e L the probability that B rejects ¥
=05

“This is often called wo-sided bounded-error proba-

et el B unit-weight self-loop,
presuming that all other edges are out-going.

I assumed that there is some predefined
ion convention for Boltzmann machines.
‘That is, for each 7 there is some finite time T(n) at
which the computation of B, on an input of size n is
deemed o be complted. AL time the apat of
B is encoded in the states of the output pro

running time of B is then said to be 7(r). Note that
the exact details of the termination con
crucial to this definition. 7(n) can be taken to be
the worst-case running time over all inputs of size n
provided there is some method of maintaining the
output for up to 7(n) steps should the computation
terminate at some carlier point for any particular
input. This can be achieved with careful design and
self-loops. B is said 1o have size (at most) Z(n) i
forall n = 1, |E,| = Z(n). Size will be used as
measure of hardware equitements. It s easonac
10 assume that |E,| = |V, (which is the case for all
but degenerate machines) 5o that the number of edges
is a reasonable measure of size to within a small
polynomial. Also assume that the absolute values of
the edge weights (and therefore the thresholds) are
bounded above by a polynomial in Z(r), for con-
reteness, Z(n*for some c € N. Thus Z(n) s, o
polynomial, a good measure of the
pamber of bt equired 1o deselbe By Thi o 5
reasonable assumption because there is experimental
evidence (Hinton & Sejnowski, 1986) that the per-
formanco o lesming algorts s enariced when
the weights are kept small.

3. APPROXIMATE LANGUAGE
RECOGNITION

Consider Boltzmann machines which have a single
output, that s |0,| = 1 for all n. If x € {0, 11", B is

for sequential

computatior
Tosicen Woiiidedserrof provabilisucappeati st
first 10 be an unnatural choice; for example, a lan-
hi prob-

ory.
Lol
»

=
mdcp‘.ndcm Bernoulli trials each with probabi
of success, the probability that at least  trials suc-
ceed, denoted B(m, N, p), has the property
im0 = () (222

N-m

provided m = Np.
Taking p = 0.5 — ¢ and m = N/2 in Lemma 1
it follows that the probability of more than half of
the N trials failing is given by
B(VI2, N, 0.5~ €)= (1 = 4e)
Thus if
B
Tog(l - 4e)
AR vt b e son g e
prob: s ety
with only

used 10 obtain 99.9% certainty with 339 trials, re-
gardless of the size of the input

Note that the above results hold equally well for
Boltzmann machines which compute functions. Let
£:{0, 11" = {0, 1}. A Boltzmann machine is said to
compute f if for all inputs x and for all, the machine
terminates with the th bit of its output equal to the
ith bit of f(x) with probability 0.5 + e. Given a
machine with m outputs, make m copies of it and
ik iFRDitplt o cach ik Icepericar
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copy can then be treated as a language recognizer.
In comparison to the original machine, the new com.
posite machine has identical running time and size
at most quadratically larger.

4. AN AUGMENTED
BOLTZVANN MACHINE

It convenient to augment the Boltzmann machine
with deterministic prcessosaf oo difseu yps.
rocessor, v, is active at time ¢

=i o hrshold
is active at ime £iff W,(0v, 1) = iy (0). A deterministic
2 Wi be i i it containing the
symbol “<" for a lower-threshold and “=" for an

L Parberry and G. Schnitger

is at most a polynomial. This restriction to machines
il ruuing tme Dot much lrge than sz s re-
sonable in the e fact that much can be
iy ol tine ik ‘polynomial

"l i intructive to conside the synehronous par-
s etk T e e s i
of a combinational circuit s in a sense syn
plull:l More formally, 8 = (8,, Bz. i ) whem
(V. £,). For every vertex o € V, there is a
o representing v at time , called (0, ) € V..
for 0 = £ = T(n). For every edge (u, v) € E, there
is an edge from the vertex representing u at time
£~ 110 the vertex representing v at time (. The
thresholds, weights, nput procssors, outut prc

value. Itis easy to produce processors which compute
the Boolean AND and Boolean OR of the states of
of processors, and the Boolean negation of a
single processor. An AND processor is an upper-
threshold processor with threshold k and edges of
weight 1 from k other processors. An “AND” proc-
essor is depicted as a circle containing the symbol
“&.” An OR processor is an upper-threshold proc-
essor with threshold 1 and edges of weight 1 from k
“OR” processor is depicted as
g the symbol “V.” A negation proc-
essor is a lower-threshold processor with threshold
0.and an edge of weight 1 from another
A negation processor s depicted as a circle contan-
ing the symbol .

“The model s also augmented with a st of andom
imputs, Ry C V,, R, 1, = {}, Ry 0 A, = {}, cach
of which is independently assigned a state (with the
specaptioo peoBablty o being civ) s he o
of cach computation. A random input is depicted
wing s il contiving he word it
probability that it is initally a

5. REMOVAL OF CYCLES

may have cycles (sometimes
called feedback loops) in its connection graph, A
standard technique from Savage (1972) (used more
recently in Goldschlager & Parberry, 1986, and Par-
berry & Schnitger, 1986, in press) can be used to
e thes cyls. Foresch maching wih cyes
itis possible to produce a combinatior it which
has the same input-output behavior (in pammm,
which recognizes the same language) wit &galy:
e

Let B be a Boltzmann machine of size ;(ny and
running time 7(n sts
Of T(n) + 1 “snapshols’ of B, one at . i
time. T(n)Z(n))

5

essors rocessors are mappe
s i s e

Vo= (.00 € V0= 1= T()

(@ 1= 1, @ ), ) € B, 15 05 TG}
b 1)
s 1= 1), @, 0) = i, 0)

L= {0l e L}

(Tl 0.

A= (O € AL 05 05 T}

(@ 0,0 = 10,1 for 0= 1% T(n), v E Vi

For example, the acyclic machine in Figure 2 equiv-

() for 0 = £ = T(n)

and running time 7(n). If T(n) s restricted t0 be at
most polynomial in Z(n), then the increase in size

‘when the latter Is run for two
o L o 0, O 8. 2 p =



Relating Boltzmann Machines
alentto the cyclic machine in Figure 1 when the latter

In the case of a sequential Boltzmann machine,
the same construction as above is used, with the ad-
dition of circuitry which ensures that only one proc-
essor in cach level has the opportunity to change
state. At most [log Z(n)] random inputs are added
for each level, each random input with probability
0.5 of being active. The extra circuitry shown in Fig-
ure 3 is also added for each processor v at time .
‘The square box in that figure represents a circuit
hose autpu i tre i thesequens of e andorn
inputs encodes the representation of v. The
construction of such a circuit in constant depth and
polynomial size is left as a trivial exercise for the
reader. The resulting circuit has size O(T(n)Z(n)),
and its depth needs to be extended to at most O(T(n))
in the case where Z(n) is not a power of 2. In the
case of a parallel Boltzmann machine, a similar m

exi]
R

statoof v
attimet

POURE 2. Exa cruty g 5 s socuenl op:
‘a combinational circult

@

ification is made to ensure that processor (v, 1) is
allowed to change state with probability p, (see Fig-
ure 4).

6. REMOVAL OF RANDOMNESS

Itis possible to replace each processor of the Boltz-
‘mann machine with a small number of deterministic
processors and random inputs. A processor with
threshold-value , and s inputs with weights w,
w, can be replaced by the circuit in Figure 5. The
ircuit makes use of an equality processor. An equal-
ity processor vis active at time ¢iff W,(v, 1) = hu(v).
An equality processor can be constructed from an
ot it MR e et il AN
rocessor as in Figure 6. Each (probabilistic) proc-
e Dk g mpuu in a Boltz-
ann machine with ize Z(n) is eplaced by 2Z(n)? + 1
P npile, Squdty processas mad AND proo
essors, and a single OR processor. The key is to
provide a random input for each possible probabil

stateof v
ime -1

statoof v
attimet

FIGURE 4. Extra circultry required to ensure paraliel oper-
ation of a combinational circult.



FIGURE 5. A prbasliac Bozmarn pocessorand s -
Note that In the random processors, p(x) is
oepiparrisen il

‘The probability depends on the threshold value, &,
which is bounded above by a polynomial in Z(n),
and the sum of the weights of edges connecting the
processor to active neighbors, which, since s and the
absolute value of each weight are bounded above by
a_polynomial in Z(n), is also bounded above in
absolute value by a polynom
‘dom input which s active with the correct probability
value is “sclected out” by the rest of the circui

Given a Boltzmann machine B with determis
processors and random inputs as described above it

e ran-

FIGURE 6. An equality processor and Its Implementation.

L Parberry and G. Schitger

is possible to produce a new machine B which is
descmuniaic sl eoopize he s g
with only polynomially more and time
Seoaie by 31 o 8 comtsad vctiple wing A vell
oo i cie doe s A nan i 98, Soenen
(Bi, By, ...} is such a Boltzmann machine
‘which recognizes L with error probability 0.5 — e,
where e > 01is a real number. If B, is a finite Boltz-
mann machine with n inputs, and 7 is a fixed string
of zeros and ones of the appropriate size, let B,(r)
be the machine obtained by fixing the random-inputs
according (0 r. That is, if the ith bit of £ is 1, then

2¢)(log.2)/e?, choosing each random inpu
P ool U it g bl mn he
demonstrated that there i

as B, with no error. B, consists of a copy of each of
B,(n). . . . , Bu(r). Each of those subcirc
sample of the random circuit B,; B, decides which
output 1o produce by taking the consensus of the
outputs of those samples (assume without loss of
generality that c is even).
x be an input of size n. Let

+ra)lBe

Failures(x) = {(r, ives the wrong outpu)

Itis easy tossee that i s picked at random,
then he probabilty that Failures(x) is <27,
‘The proof requires a well-known result from prob-
ability theory adopted: from Angluin and Valiant
(1977), and Valiant and Brebner (1982). Suppose N
Eikponte s BEIA Sk RO p
of success are perform Bk, N, p) be the
probabily that ot east K i I i i

FIGURE 7. A deterministic machine 8, constructed from cn
coples of 8,..
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Lemma 2: 1tk = Np(1 + B) for some 0 = p =
1, then B(k, N, p) < e~
‘The proof follows s Lemma 1. 0

If 7 is picked at random, the probability that it
fails is 0.5 ~ . Without loss of generality, assume
that & = U/4. If cn independent Bernoulli fiRfae

[
Zr.)(log.z)lz and lake N=on a
2e/(1 — . then by Tamminine prob-
s St cnf? failures out of e
trials i

B(eni2, cn, 05 ~ ¢) < e-tsans0 <2-x

re picked at random, the
probability that it is in uFa.lum(x) is less than one
(since there are only 2° possible strings x of Epgn
). Hence there must be at least one choice of
Strings 1, .« 1 that make 5, work comrctly for
all inputs of size . Therefore 4 recognizes the same
language as B.

BOLTZMANN MACHINES AND
THRESHOLD CIRCUITS

6

‘Thus negative edge-weights can be removed from
the machine while at most doubling the size and
depth, and increasing the thresholds by a polynomial
amount

8. CONCLUSION

1t has been shown that Boltzmann machines are in
asomse squivalent o unbounded favin icuts bt
from gates which compute Boolean threshold func-
tions. Unbounded fan-in threshold circuits have at-
tracted a great deal of attention in the recent liter-
ature (see, ¢.g., Chandra, Stockmeyer, & Vishki
1984; Parberry & Schitger, 1986, in press; Reif,
1987). It is perhaps surprising that so many of the
Kkey Teaures of the Boltzmann machine (such as
the ability to perform simulated an-
mlmg) 5 icapo b ey e g i
that Boltzmann machines are weaker than they ap-
pear, two comments must be made. Firstly, Boltz-
‘mann machines may be more powerful than thresh-
old circuits by up 10 a constant multiple in speed and

a polynomial in size. This latter advantage may be
of some use should the construction of l!l)lmmmn

result,

p
all edge-weights madc oqual o ove This can
be achicved casily by first finding an eq
cuit with dge-weights, and then replu‘mg
each edge of weight w with w edges of weight 1. A
‘method for getting rid of negative o wcigms wi
squaring the size and increasing the e by
 constant factor appears in Parberry and Sehnitger
(1986, in press). A much better construction requir-
ing only a lincar increase in size was suggested to
the first author by M. S. Paterson in 1986 and is
implicit in a result described by Godbeer o e
dgowithnegaiv weightwfom procsso 0 proc-
esso jcan be replaced with an edge of weight 1 from
processor (0 a new negation processor, and an cdge
of weight —w from there to processor j, which has
its threshold increased by the absolute value of .
‘The correctness of this construction can be deduced
from the simple observation that for all x € {0, 1},
T-% ©
Jhes ¥ dencics the somplement of 1 0, 1): Con-
-thr ssor with threshold &,
W from m proc-
X respectively (that
x; = Lff the ith processor is active). It becomes

condly,
Urestold: cireuits are extremely powertal. For cx.
ample, they can multiply two integers (Chandra,
Stockmeyer, & Vihkin, 1989), approsimte con
it . perform integer and
mocial tivson fast Foure) trasafomn ply:
o interpolation, Chinese remaindering, com-
pute elementary symmetric functons, and banded
and triangular Toeplitz werses (Reif, 1987)
in constant depth and polyncmialsse: Thas Bole.
i mschinke sre- ooty mort fowcrtuthan
clsicalsequental o paralll models of compu-

" Many ssumptions about/Bolzmannmachines
have been made in this paper. Some of these are self-
evidently reasonable, while others may be the subject
of some controversy. In the interests of clarity, a lst
of the important assumptions follows.

1. The computational paradigm. The Boltzmann
machine is formalized as an automaton which
feoopinsforallngules Tt s, the Bol-

sed as a computer which takes
a lm—slnng i T g s 10

. Soatably. Only scaable Bolcaiamm ackines
are considered. They embody an algorithm which
can be applicd to inputs of any size. The re-
sources required for a computation are measured
as a function of input size. This is achieved by
defining  Bolcmani machine to be a indiite
family of finite machis of which is to
deal it s OF  particala ae' Thi

type



of definition is standard in the study of conven-
ks and circuits built from two-input
. 1981; Par-

. Non-uniformity. Non-uniform Boltzmann ma-
chines are studied. That is, each finite
in the infinite family may look radically different.

contrast, in a uniform machine, a description
o each finite r-input machine in the family should
be easily computable from 1 (sce, e.g., Ruzzo,
1981, for classical circuits, Parberry & Schnitger,
1986, in proes fo Bolbmmmnmackncs) o The

oo soibarilok AR i e wok.
Somstaoctie pioof of fhexithocs of. o Getoe
it macbin osresponding 10 4 random

-

. The Boltzmann machine is
viewed as an unbounded fan-in computer. That
8, thefaa o th consecion rap i ot o-
q fixed (independent of ).

bl Siouininibsiaiog
in the literature (see, Chandra, Stock-

1984; Stockmeyer & Vishin, 1984).
Fixed Weighs.

L Parberry and G. Schnitger

1983) show that the same type of network under
muy paralel peraion sher teachos ey
e or a

works are NP-complete (see Godbeer, 1987;

Small Weighis. 1t is assumed that the absolute
of the edge weights (and therefore the
lhx:snaldx) are bounded above by a polynomial
in the s of temachine, This i  ary -
gent requirement. Any polynomial-size deter
ministic network with arbitrary real weights can
b realized with integer weights of polynomially

or time (note that this is exponentially larger
than required). It follows from this observation
that all weights can be made equal to unity if
size is increased by a polynomial and running
time by a constant multiple.
ne would expect that only
networks of polynomial size would have a chance
of being implemented. Furthermore, it is rea-
Sonsblo 1 et that only networks which ter-
minate. time will be useful. There-

and thresholds do not vary with time are studied.
Varabl weights are cruialfor he eaming ol
gorithms in Ackley, Hinton, and Sejnor )
nd Hinton and Sejnowsks (1986), but weights
are kept fixed for computing the learned func-
tion. Different behavior may result from allow-
ing the network to continue modifying its
weights

Clocked Operation. The network is assumed to
be clocked, that s, the existence of a global clock
which has a large enough period to avoid race
conditions and the effects of spurious behavior
g sial-changet i el Unclock:d
(asynchronous) networks of

sors are studied by Alon ugss) e Lepky o
Miller (ws»)

Resources. The resources of running time and
hardware are considered. The number of con-
nections, which we call the size of the network,
e of hardware, and the num-

Ay
ed after 7(n)
steps, at which time the output can be deter-
mined. A typical termination condition is the
convergence of the network to a steady-state.
Hopfield ( i i

fore it i reasonable to study only computations
for which the running time is bounded above by
of the network. Note

using the technique of Hopfield (1982) that f the.
conecion graph i andireced (i forall n &
U, 0 € Vo, Wity v) = w,(v, w) then &

operstion il eseli eadyaui o acyde of

Iength two in polyno

Frobabin. Michines withtwo-sided bounded-

error probabilism are studied. These machines

have probability of being correct bounded away
m 0.5.
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